Today’s Physics Education

The Hindenburg Disaster as a Teaching Tool
Bringing Astronomy Research into the Classroom
Updating the Careers Toolbox
The right graduate school—as close as your pocket

You can find your ideal graduate school programs anytime, anywhere with mobile-friendly gradschoolshopper.com.
Your Dollars At Work

Paying It Forward: A Physics Alumnus Connects with the Next Generation – Mariann Salisbury, Development Director, American Institute of Physics

Features

The Hindenburg Disaster Is a Physics Teaching Opportunity – Gregory A. DiLisi, Associate Professor, John Carroll University

Bringing Astronomy Research into the Classroom with Astrobites – Susanna Kohler, Astrobites Administrator

TRAPPIST-1: Just right? – Elisabeth Matthews, PhD Candidate, University of Exeter

Unifying Fields

Updating the Careers Toolbox – Brad R. Conrad, Kerry Kidwell-Slak, Toni Sauncy, and Katherine Zaunbrecher – Career Pathways Project Team

Preparing Students for 21st Century Careers – Kendra Redmond, Contributing Writer

Spotlight on Hidden Physicists

Michael Brewer, The Inventor and Entrepreneur

Melissa Lamberto, The Medical Physicist

Departments

The Director’s Space

Chapter Profiles

In the News

Member Updates

2016–17 Sigma Pi Sigma Initiates

ON THE COVER

SFS Member and former SFS Intern, Samantha Spytek. Samantha graduated from Virginia Tech in 2017 with a BA in Physics. She is continuing in Virginia Tech’s Secondary Science Education Program with plans to earn an M.Ed. with licensure in Physics. Samantha is excited to begin her career teaching high school physics.

Photo credit: Susan Haymore.
Each issue of *Radiations* focuses on a different facet of who we are as a community. This edition homes in on how we acquire knowledge and what it means to use knowledge. To paraphrase Michio Kaku, all humans are naturally scientists. Physicists and astronomers in particular focus on the *why* questions: Why are the equations of this form? Why must the wavefunction go to zero at infinity? Why do stars have the spectrum they do? We never stop questioning, growing, and expanding what we know. The universe is our laboratory. What more could we ask for?

Many students have asked me why a physics degree is so useful, and I usually reply that it enables me to not only formulate questions but make sense of the complicated world around me. The world is messy, but that’s half the fun. This issue focuses on the idea that education and discovery happen everywhere, and an undergraduate physics education is changing to embrace this reality. Physics is deeply seated in experimentation, and part of its beauty is that we can apply the principles learned in the laboratory to the real world: by carefully examining distant starlight, by investigating the Hindenburg explosion, and by incorporating experimental or computational activities in almost any course.

Throughout my education, the most important lesson I have learned is that physics is not just scribbles on a chalkboard but something that happens every day, all the time. As trained scientists, it is our task to share what we learn and help others see the beauty in physics and sunrises. I hope this issue helps.

Humans are natural born scientists. When we’re born, we want to know why the stars shine. We want to know why the sun rises.

— Michio Kaku
Introducing Some of the Newest Sigma Pi Sigma Chapters

by Kendra Redmond, Contributing Writer

Berry College

After a decade of inactivity, Berry College recently resurrected its SPS chapter. “Our students were interested in strengthening our physics/engineering community and saw SPS as a chance to do that,” says advisor Shawn Hilbert. Two years in, they added Sigma Pi Sigma. “Sigma Pi Sigma is a great way to come together as a community to collectively say thank you to our student leaders both inside and outside the classroom.”

The department graduates an average of four physics majors a year and supports about 80 physics/dual degree engineering majors at any given time. The faculty strongly emphasize active learning with techniques grounded in physics education research, encouraging technical reading, strong problem solving, self-learning, and research.

The SPS and Sigma Pi Sigma chapters at Berry College host an annual physics magic show for their local community of Mount Berry, Georgia. They also host star parties at the campus observatory, giving community members the opportunity to explore the cosmos. In the future, the chapters plan to host a monthly science café series.

University of the Sciences

Roberto Ramos, advisor of the new chapter at University of the Sciences, describes the physics department as small and very tight-knit. SPS students participate in several outreach events in the Philadelphia area each year, developing leadership and teaching skills early in their education. With Sigma Pi Sigma, Ramos aims to honor outstanding scholarship and connect students to the broader community of physicists.

The chapter’s inaugural induction ceremony included talks by three physics professionals—a food scientist, medical physicist, and high school physics teacher. “These speakers from different walks of life gave personal testimonies of excellence as they practiced physics in their respective spheres of influence,” said Ramos.

Moving forward, the chapter plans to continue inviting professionals from diverse fields to be part of their induction ceremony. “Through this process, we want to facilitate the connection between students, faculty, administration, and these professionals—and even stimulate collaborations,” says Ramos. They also plan to invite local K-12 students who are impacted by SPS physics outreach activities.
University of Washington Bothell

This is an exciting time for physics at the University of Washington Bothell. “We have a new physics degree program, with the first students declaring their physics major in 2016 and graduating in 2017,” said Joey Shapiro Key, Sigma Pi Sigma advisor of the new chapter. There are currently about 35 physics majors.

The Sigma Pi Sigma chapter was founded by Holly Gummelt, the first student to declare a physics major on campus. “Our physics department is very new and small, but we have a wonderful group of dedicated professors who are incredibly involved in our education, both in and out of the classroom,” she says.

Gummelt was inspired to start SPS and Sigma Pi Sigma as another way “to create a fuller experience for the students and commend them on the enormous amount of effort they put into their schoolwork.” This past spring, she was among the first group of students inducted into the chapter and one of the first to graduate with a physics degree from the university.

West Virginia Wesleyan

“With about 100 physics majors, we have the largest undergraduate physics program in West Virginia,” says Albert Popson, Sigma Pi Sigma co-advisor of the chapter recently established at West Virginia Wesleyan in Buckhannon. The physics program emphasizes a hands-on approach with several advanced labs and research opportunities.

The department is also home to a space club and a science public outreach team. Popson hopes that the addition of Sigma Pi Sigma will help students become contributing members of the professional community of physicists by engaging in service, building professional skills, and presenting scholarly work at professional meetings and in journals. Chapter highlights so far include colloquia on topics ranging from NASA’s planned mission to Mars to medical physics, bridge design, and gravitational waves. Several students have given research talks at recent conferences, and many chapter members participated in SPACE Day, a public outreach event that included student presentations and competitions on drone flying, cryptography, and designing paper airplanes and hydrofoils.

For chapter induction resources, visit
http://www.sigmapisigma.org/sigmapisigma/induction-center
It's fitting that one of Don Lincoln's favorite science communication videos involves him blowing up a house.

Lincoln (Sigma Pi Sigma '85), a senior scientist at Fermi National Accelerator Laboratory in Chicago, is a particle physicist. He smashes small things into each other on the regular. So why not also blow up a house?

Okay, so Lincoln didn't push the plunger, but in one of his science communication videos (he's created dozens) the physicist uses a recently demolished house (with permission from the local bomb squad) as a metaphor to explain how particle accelerators work.1 In another video he makes the compelling case that particle physicists led to cat videos,2 and in a third a Charlie Chaplin gag reel explains gravity.3

It was for these videos, as well as his Great Courses lectures, numerous articles in popular media, and a TED Talk—among other scientific communication achievements—that Lincoln was awarded the 2017 Gemant Award from the American Institute of Physics.

The Gemant Award is an annual prize recognizing "significant contributions to the cultural, artistic, or humanistic dimension of physics" and comes with a $5,000 grant and an invitation to give a public lecture.

Winning the award "means a great deal," Lincoln says. "Outreach is... something I did, sort of not greatly encouraged by academia," he says. "Nonetheless, I personally think it's important, and the fact that people have looked at it and said, 'He's doing it well,' is something."

Lincoln didn't grow up in an academic family, but even early on, he had "theological questions" about the world. "Questions like, 'How did the universe come into existence? Does it have to be the way it is? Could it be a different way? Could there be a universe where we don't exist?' These are questions that have bothered classical thinkers for thousands of years," he says, and as a kid, they bothered him, too. He tacked onto his physics major minors in both philosophy and religion, but realized that only science held quantifiable answers. While conducting research at Fermi National Accelerator Laboratory (Fermilab) as a graduate student, he began “learning how to talk to people” by leading tour groups of visiting high school students. Soon he began writing for Fermilab’s website, then writing articles, hosting videos, and writing books.

Lincoln has also had a successful research career—he helped discover the Higgs boson at CERN, with "six thousand of my closest friends," as he jokes in a TED Talk.4 But it's with outreach that he has made his broadest impact.

“The fact of the matter is that we as scientists... we make measurements, make insights, make discoveries, and understand the world around us. However, we also live in an environment in which a lot of science funding is handled by the public. We are not independent of the community. I think it's imperative that we share the things we discover," he says.

Further, science isn't going away just because someone might want it to, he says. “We live in a highly technically advanced society. Cell phones work because of scientific principles that have been discovered. Vaccines keep people alive—babies used to [regularly] die before they were 2. Scientific phenomena are all around us.” Now, however, science is under attack, he says. “There are people who have not only skepticism but a hostility to the idea that there really are answers. So I think it's extremely important that we as scientifically minded people push back against what I see as a fierce undercurrent of anti-intellectualism.”

Ultimately, Lincoln hopes that the physics knowledge he shares in books, articles, and videos reaches more than “science likers.” “Somebody who stumbles upon one of my videos on YouTube could have no clue they like science,” but after watching a 5 or 10 minute video, could be converted. “That's great,” he says. “That's the outcome I'm most proud of.”

1. “Subatomic Bomb Squad,” https://www.youtube.com/watch?v=-d6sKPPFYTU.
2. “Because CERN Invented the World Wide Web, of course,” https://www.youtube.com/watch?v=sTt27A8W4eY.
3. https://www.youtube.com/watch?v=9LGB07dLgYk.
4. https://www.youtube.com/watch?v=7DbFZKdeBaQ.
David Zick is a philanthropist whose motivations for giving have deep roots in his undergraduate years at the University of Michigan-Flint. In the 1970s, he studied physics and education, earning a bachelor’s degree from UM-Flint and a master’s degree in the same fields from Michigan State University. From his master’s degree he went on to teach high school physics for four years. The friendships he made with faculty and classmates in those years are the bedrock of his professional foundation.

Zick left teaching and went into business for himself, but never lost his passion for physics or his gratitude for the scholarships that made his undergraduate education possible. To this day, he values how studying physics in small collaborative teams shaped his thinking and informs his business. He considers his giving a way to ensure the opportunities that were available to him as a student in need will remain available to others.

“The clarity that science teaches is essential for problem solving,” Zick says. “The value of my undergraduate experience is that I learned to simplify issues, identify problems while not being distracted by tangential issues, and work collaboratively with others to find solutions.”

Zick was inducted into Sigma Pi Sigma in 1996, long after he graduated, as there wasn’t a chapter at University of Michigan-Flint in 1973. Zick became involved with Sigma Pi Sigma after he initiated a giving program to UM-Flint to support the undergraduate physics department. He has funded many scholarships to help young people finish their degrees, meeting with students and mentoring them. He has supported lectureships on campus. And in 2012, he set an example by funding the building of an innovative lab/lecture learning center for physics and engineering. Most recently, in 2016, Zick honored Dr. Donald DeGraaf, his physics professor (who is now 93), by funding a second lab/lecture learning center hall in his professor’s name.

Through his philanthropy, Zick has advanced opportunities for undergraduates in physics and has kept in touch with some of the students as they move through undergraduate and graduate programs and to the professions of teaching, research, and business. In addition to supporting SPS financially since 1996, he has also donated his time to several SPS committees: working to inspire local chapters to reach out to their communities, invite speakers to share their scientific research and breakthroughs, and to encourage young people to study the physical sciences.

Zick believes that his decisions in the business world had their earliest underpinnings in the undergraduate physics classroom where he learned to identify problems, process solutions, and work carefully and collaboratively in teams to learn from the process. He has found that these lessons continue to apply in his professional life and have profoundly shaped how he approaches his work.

“The skills I acquired working on problem solving with other physics undergraduates followed me into the business world.”

Through his unwavering support, Zick has inspired others to get involved in SPS at the local and national levels. As you reflect on your own experience, we hope you will consider making a gift to SPS in honor of your favorite professor or mentor. For more information, contact Mariann Salisbury, AIP Director of Development, msalisbury@aip.org, or call 301-209-3098.
2016–17 Award Recipients

Sigma Pi Sigma congratulates this year’s winners and thanks the generous donors whose support makes these awards possible.

2017 SPS Summer Interns

SPS internships are awarded on the basis of collegiate record, potential for future success, SPS participation, and relevant experience. Interns are placed in a variety of organizations and work on research, policy, or education projects. See the interns’ profiles and blogs at https://www.spsnational.org/programs/internships/interns/2017.

Justine Boecker
Bethel University
AAPT/PTRA Teacher Professional Development Intern
Designed and revised resources for AAPT’s high school teacher professional development programs.

Victoria (Tori) Eng
Coe College
AIP Center for History of Physics Intern
Worked with staff to create a museum-style exhibit to highlight the human side of physics.

Michael Forkner
Oregon State University
The Optical Society Intern
Supported the development and update of OSA’s Optics for Kids program.

Eleanor Hook
Rhodes College
AIP Mather Policy Intern
Worked for the House Science Committee Democratic staff.

Lisa McDonald
Coe College
AIP FYI Science Policy Communications Intern
Worked with AIP staff to research and write FYI Bulletins.

Mary Ann Mort
California State University, Sacramento
APS Career Programs Intern
Researched and created content for the APS Careers website and the “Physics InSight” slideshow.

Zakary Noel
Lamar University
SPS SOCK & NIST Summer Institute Intern
Created and tested a set of outreach activities for SPS chapters and the NIST Middle School Teacher’s Institute.

Samantha Pedek
University of Wisconsin – River Falls
NASA Goddard Space Center Intern
Collaborated with a team to further the detector and modulator development.

Lexxi Reddington
University of Denver
AIP Center for History of Physics Intern
Created a social media outreach plan to promote the exhibit on various outlets, including a newsletter, blog, Facebook, and Twitter.

Jacob Robertson
Austin Peay State University
SPS SOCK Intern
Created and tested a set of core activities for this year’s SOCK and writing instructions for lessons and demonstrations.

Francisco Ayala Rodriguez
University of Texas - El Paso
APS Public Outreach Intern
Developed and implemented a new informational education effort alongside the APS public outreach team.

Kristine Romich
California State University - Northridge
NASA Goddard Space Center Intern
Researched the basics of time series analysis and image processing by contributing to two research projects.

Luis Royo Romero
High Point University
NIST Research Intern
Worked with the National Institute for Standards and Technology (NIST) to support their development of new characterization techniques, physics-based models, and data analysis methods.

Riley Troyer
University of Alaska – Fairbanks
AIP Mather Policy Intern
Worked for the Senate Energy and Natural Resources Committee Republican staff.

Photos by Hyun-Joo Kim and Liz Dart Caron.
SPS Award for Outstanding Undergraduate Research

Awards are made to individuals for outstanding research conducted as an undergraduate. Winners are awarded $1,800 to present their research at an AIP Member Society meeting and receive $500 for themselves and $500 for their SPS chapters. The runner-up receives $250 for themselves and $250 for their chapter. Learn more at https://www.spsnational.org/awards/outstanding-undergraduate-research.

Winners
Matthew Huber
Rhodes College
Kathryn Regan
University of San Diego

Runner-Up
Brittney Hauke
Coe College

Honorable Mention
Luciano Manfredi
Loyola Marymount University
Jeremiah Wells
University of Minnesota - Twin Cities
Collin Wilkinson
Coe College

Outstanding Chapter Advisor Nominees
The Outstanding Chapter Advisor Award is the most prestigious recognition given each year by SPS. The following SPS chapter advisors were nominated by their students, colleagues, and departments in recognition of their dedication to furthering the mission of SPS. The winner will be announced at the Winter 2018 AAPT Meeting in San Diego, California.

Michael Dowding
South Dakota School of Mines and Technology
Alina Gearba-Sell
United States Air Force Academy
Edwin Greco
Georgia Institute of Technology
Craig Group
University of Virginia
Donna Hammer
University of Maryland - College Park
Shawn Hilbert
Berry College
Jose Lopez
Seton Hall University
Walderian Majewski
Northern Virginia Community College
David Peak
Utah State University
Jessie Petricka
Gustavus Adolphus College
Roberto Ramos
University of the Sciences
Michael Rogers
Ithaca College
Ryan Sayko
Allegheny College
Peter Sheldon
Randolph College
William V. Slaton
University of Central Arkansas
Gary White
George Washington University
Matthew Wright
Adelphi University

Scholarships
Multiple awards, ranging in value from $200 to $2,000, are made each year to individuals showing excellence in academics, SPS participation, and additional criteria. Learn more and see photos and bios of the recipients at https://www.spsnational.org/awards/scholarships.

SPS Leadership Scholarship
Vanessa Chambers
Utah State University
Emily Churchman
Texas Lutheran University
Niyousha (Ni) Davachi
University of Texas at Arlington
Cody Jordan
University of Central Florida
Luciano Manfredi
Loyola Marymount University
Elijah Meyer
University of Oregon
Spencer Peters
University of Washington
Francesco Sessa
Florida International University

SPS Outstanding Leadership Scholarship
Shannon Armstrong
Grove City College
Matthew Huber
Rhodes College

Aysen Tunca Memorial Scholarship
Elizabeth Pham
California State University, Chico

Future Teacher Scholarship
Shannon Armstrong
Grove City College

Herbert Levy Memorial Scholarship
Scott Sacharcyzyk
Portland Community College/Portland State University

AWIS Kirsten R. Lorentzen Award Scholarship
Elizabeth (Cady) Van Assendelft
Yale University

Science Systems and Applications, Inc., Underrepresented Student Scholarship
Kassie Marble
Tarleton State University

Science Systems and Applications, Inc., Academic Scholarship
Steven Stetzler
University of Virginia
Science policy affects you—stay informed with FYI

With a 25-year history of consistent, nonpartisan reporting, FYI helps scientists like you know what’s happening on the Hill. You can rely on FYI for authoritative information about federal science funding, legislation, key appointees, the administration’s priorities, and more.

Sign up for this free email service at aip.org/FYI
This May marked the 80th anniversary of the Hindenburg disaster. On May 6, 1937, the German passenger zeppelin Hindenburg, hovering 300 feet in the air and held aloft by seven million cubic feet of hydrogen gas, burst into flames while preparing to dock at the Naval Air Station in Lakehurst, NJ. The ensuing fire consumed the massive airship in only 35 seconds.

We present the Hindenburg disaster as a case study in the flammability of fabrics. Our goal is to examine the ship’s outer covering and decide whether or not it was the fire’s initial source of fuel. To accomplish this, we piloted a basic vertical flame test with students in an introductory-level undergraduate laboratory. Our test is patterned after the protocol set forth by the American Society for Testing and Materials (ASTM) for determining the flammability of textiles. The case study provides several unique teaching opportunities.

First, we observe the anniversary of this tragedy by bringing it to the attention of a new generation of students, namely, those currently enrolled in our courses. Reexamining a major historical event is a powerful means of piquing students’ interest. Next, we introduce the topic of physics flammability at a level of rigor appropriate for introductory students or more advanced students. Finally, we use this case study to emphasize that scientists no longer adopt a strictly passive approach to history. Instead, scientists now take a forensic approach, bringing sophisticated analytical tools to scrutinize why certain events unfolded. Far from being a set of agreed-upon immutable facts, the historical record is open to reexamination and reinterpretation.

“Reexamining a major historical event is a powerful means of piquing students’ interest.”

“THIS GREAT FLOATING PALACE”

The zeppelin LZ 129 Hindenburg (Luftschiff Zeppelin #129) was launched in 1936 as the premier passenger aircraft of the world’s first airline, the German Airship Transportation Corporation.

The ship was classified as a rigid airship because of its steel
frame. Within the steel structure were 16 large gas cells (or bladders) made of gelatinized latex, designed to hold hydrogen gas. The steel structure was covered by panels of cotton cloth doped with various compounds. The flammability of this outer covering plays a pivotal role in the debate surrounding the ship’s destruction.

As the ship approached New Jersey on May 6, 1937, it encountered a storm before reaching the Lakehurst Naval Air Station. After a number of maneuvers designed to get the ship into position at the airfield, the forward grounding lines were dropped. A light rain began to fall. The metal frame was now electrically grounded by the landing lines.

“IT’S BURST INTO FLAMES!”

It’s burst into flames! … and it’s crashing! It’s crashing terrible! Oh, my! …. It’s smoke, and it’s in flames now; and the frame is crashing to the ground, not quite to the mooring mast. Oh, the humanity! The first sign of trouble appears to have been at the top, rear of the ship, just in front of the vertical fin. Two crew members testified that they noticed a fluttering of the ship’s outer cover at this location—suggesting hydrogen was leaking.1 By 7:25 p.m., a yellow flame appeared on the outside of the ship at this spot. Within seconds, the tail section was engulfed in flames.

Most eyewitnesses described the Hindenburg as burning from the inside out. Within 30 seconds, the entire ship crashed to the ground. In general, passengers and crew in the promenade or public areas of the ship were able to jump to safety while those deeper inside the ship were not. Some family members lived or died based merely on a few feet of separation.

THEORIES

Subsequent investigations by the United States and Germany were inconclusive in determining the cause of the fire. Was it sabotage? No evidence of sabotage was ever found. Was it a lightning strike? Unlikely—the outer covering of the ship had several burn holes, some as large as five centimeters in diameter, proving the ship had survived in-flight lightning strikes during its first year of service.2

Today, a reexamination of the evidence leaves us with two competing theories. Here is what they agree on: As the Hindenburg passed through the storm off the New Jersey coast, it became electrically charged. When the landing lines touched the ground prior to docking, they “earthed” the Hindenburg’s steel frame but not every panel of the ship’s fabric covering. A spark between the charged panel of fabric and the grounded steel frame ignited some source of fuel. The difference between the two theories lies in identifying that source of fuel.

The most likely explanation of events is that the electrostatic discharge ignited leaking hydrogen gas. However, in 1997, engineer Addison Bain put forth the idea that at least early in the fire, the ship’s outer covering itself was the primary source of fuel for the fire.3 The cotton cloth that covered the ship was doped with different mixtures based on cellulose acetate butyrate (CAB), the base resin for what are commonly called lacquers. These coatings were used to keep the

outer skin taut for aerodynamic purposes as well as to protect it from wind, water, and small objects. This “Incendiary Paint Theory” (IPT) has merit for two reasons: (i) Hydrogen burns with an invisible flame, yet the Hindenburg was consumed in an enormous yellow and red fireball. One might conclude that something other than hydrogen was burning. (ii) The ship held its position for a few seconds before the stern crashed to the ground. One might conclude that the gas cells were intact when the fire started.

COMBINING PHYSICS AND HISTORY IN THE LABORATORY

We used the IPT as the basis of a new, inexpensive lab activity focusing on the flammability of fabrics. Our activity is modeled after the vertical flame test, ASTM D 6413–99, which has been adopted as an accepted federal test standard.4

We started by presenting students with the historical background information described in the previous sections. Next, we emphasized two concepts: (i) The goal of our activity is not to prove or disprove the IPT, but to showcase how physics can be used in the real world, and (ii) even though our activity focuses only on a vertical flame test, it gives us a quantitative understanding of how flammability is tested and how results can be used to unravel the Hindenburg disaster.

Sample preparation: We chose to test fabrics that were easy to make and inexpensive to buy, yet nicely approximate the outer coverings of the airship. To create the fabric that approximates the covering on the upper portion of the ship, we rolled cotton swatches with a layer of clear lacquer, then a layer of black primer with iron oxide as its tinting agent, then three layers of aluminum resin paste (Genesis LV 1060, purchased at Sherwin-Williams). To create the fabric that approximates the covering on the lower portion of the ship, we rolled cotton swatches with a layer of clear lacquer, then three layers of aluminum paste. We used uncoated cotton swatches as a control. Students trimmed each of these three samples into five strips (12 in × 3 in). Each strip was placed into a frame of sheet metal that secured the strip on two sides, leaving the bottom edge exposed. The frame was clamped together at four locations and suspended in a laboratory hood.

Testing: Each strip was tested and the average of five strips was reported per fabric. A Bunsen burner, with 10-mm inside diameter barrel, was used to create a 1.5-in-high 99%-pure methane flame. The flame was applied for 12 ± 0.25 s (flame-to-strip), as measured by a stopwatch. Students filmed each trial using cell phone cameras in “slow motion” mode [Fig. 1(a)]. Once the flame was removed, students continued to film the strip until any visual flame or glow self-extinguished [Fig. 1(b) and 1(c)].

Analysis: Using their video clips and a ruler, students determined the “afterflame,” the time a visible flame remained on the strip; the “afterglow,” the time a visible glow remained on the strip; and the “char length,” the distance from the edge of the strip to the furthest point of damage. They then calculated the burn rate (char length divided by afterflame) and extrapolated the time needed to burn a 106.1-foot-long swatch of the strip (1/4 of the Hindenburg’s maximum circumference) and the total burn time by adding the vertical burn times for the fabrics covering the lower and upper halves of the ship.

Results: Results support the notion that leaking hydrogen, and not incendiary paint, is the most plausible source of fuel for the fire that consumed the Hindenburg. The outer fabrics just do not burn at a fast enough rate to consume a ship the size of the Hindenburg in a minute. Our dataset shows that a fire would need ~112 minutes to burn a distance roughly equal to the height of the ship, that is to say, from the underside to the topside of the ship.

As a side note, a 2007 episode of the popular show MythBusters (Episode 70 —“The Hindenburg Mystery”) found similar results.5 Although the episode is not peer reviewed and should be viewed with some skepticism, it is a phenomenal visual resource that can be shown to students to emphasize or solidify certain concepts. The episode serves as a good closure activity and can be downloaded from iTunes for $1.99.

CONCLUSION

The 80th anniversary of the Hindenburg disaster presents a compelling case study that brings powerful teaching opportunities to a variety of disciplines. First, the anniversary raises historical awareness in our students while bringing real world applications of physics to them.

Next, the physics of flammability can be treated appropriately at the introductory level since only careful measurements of time, distance, and weight are needed. Our case study can serve as a start-of-the-semester laboratory exercise where safety, measurement, and error analysis are emphasized. Conversely, our case study can also serve as a capstone project in a senior-level engineering course.

“[J]ust as scientific theories are open to reexamination in the light of new or confounding observations, so too are historical events open to revisitation and scrutiny.”

Third, the resulting analysis shows students that just as scientific theories are open to reexamination in the light of new or confounding observations, so too are historical events open to revisitation and scrutiny.

ACKNOWLEDGMENTS

The author acknowledges James DeLuca, chemist extraordinaire, for his insights into sample preparations. The author also acknowledges the reviewers of this manuscript, who significantly strengthened the presentation of this work.

Sigma Pi Sigma Member Updates

We all have stories to tell of accomplishments, civic activities, academic activities, honors won, promotions, publications, and career changes. Below are just a few of the impacts Sigma Pi Sigma alumni have had on their communities.

University of Illinois at Chicago
Mustafa Khan, 1989

Khan recently published his second book, *Musings of a Neurologist*. It is a collection of papers on theoretical physics and mathematical neurology.

Georgian Court University
Amy Applegate, 2013

Applegate recently finished her first year of teaching Physics First at Mt. Olive High School in Flanders, New Jersey.

Stephen F. Austin State University
William Lee Powell, Jr., 1997

Powell began a new career a year ago, in July 2016, leaving a faculty/planetarium position at the University of Nebraska Kearney to become an associate dean of academic affairs at Collin College in McKinney, Texas. He misses research and being in the classroom but enjoys the challenge of administration, particularly at this rapidly growing (and already quite large), well-respected two-year college.

Murray State University
Dylan R. Stewart, 2017

Stewart graduated summa cum laude with a BS in Engineering Physics in May 2017 and started his PhD research at the University of Florida in the Department of Electrical and Computer Engineering. He is working on image segmentation algorithms for better understanding the seafloor.

Drexel University
John Degnan, 1967

Degnan was elected a 2017 Fellow of the Optical Society of America (OSA) and also joined the OSA Traveling Lecturers program. In April he gave an invited lecture on satellite laser ranging and its applications for the OSA affiliate in Rochester, New York, and a lecture on single photon lidars (SPLs) used to rapidly generate wide-area, high-resolution, 3D topographic and bathymetric maps from an aircraft at rates up to 6 million pixels per second.

Utah State University
James Sainz, 2013

Sainz received his MS in Physics from the University of Massachusetts Amherst and is now teaching physics and calculus at The Loomis Chaffee School.

Manhattan College
Joe Bassi, 1974

Roberts Wesleyan College
Kathryn Hollowood, 2015

Hollowood started last fall as a graduate student working towards a PhD in Biomedical Engineering at Rensselaer Polytechnic Institute in Troy, New York. She is a research assistant in Dr. Juergen Hahn’s Systems Biology group. Her research involves applying statistical methods to data involving patients on the autism spectrum versus their neurotypical peers in an effort to better understand the disorder.

Share your updates!
Visit http://www.sigmapisigma.org/sigmapisigma/radiations/member-news to submit your information.
Newton’s laws, Keplerian orbits, geometrical optics—the science discovered hundreds of years ago is crucial for building a foundation in physics and astronomy. But shouldn’t we also be sharing the field’s latest breakthroughs with early-career scientists? Experiencing the excitement of the Kepler mission’s latest exoplanet discoveries is arguably just as important in astronomy education as learning about Kepler’s laws.

Unfortunately, accessing recent research developments is often easier said than done. Scientific literature tends to be dense and difficult to parse for anyone not in the immediate field. Seven years ago, a team of graduate students tackled this problem and brought a new resource to life: Astrobites.

Meet Astrobites

Astrobites is a daily blog that acts as a reader’s digest of astrophysical literature, making current astronomy results accessible to more than just the researchers in that field. Every day a graduate student from the Astrobites collaboration selects one article from the arXiv, a public preprint server where scientists publish their work, and summarizes it in a brief post intended to be understandable by undergraduate physics and astronomy majors.

Astrobites posts typically run around 500–1500 words, and they strive to be jargon-free. Each Astrobites summary first provides the background that readers might need, explaining the historical context for the research and why the study presented in this paper is important. The summaries then present the main results from the paper and a few plots or figures from the study, with careful explanation of what’s being represented in each. All Astrobites posts include a link back to the original article—which is freely available on the arXiv—so that readers can easily access the full study for more information after they read the Astrobites summary.

Growth and Expansion

Astrobites has grown rapidly since its inception in 2010. The blog is now powered by a rotating team of graduate-student volunteers from around the country and the world, with a roster of about 30 authors active each year. Over the past seven years, Astrobites’ 100+ current and alumni authors have collectively built an archive on the site of more than 1,500 summaries of astrophysical research papers. During this time, Astrobites’ readership has grown to more than 17,000 unique visitors per month, encompassing undergraduates, graduates, educators, researchers, and astronomy enthusiasts.

In addition to paper summaries, Astrobites also strives to offer other information useful for undergraduate physics and astronomy majors. The site features posts on career navigation (with subjects like how to study for the physics GRE, or how to apply to graduate school), personal experiences (with subjects like what it’s like to travel to Antarctica to use the South Pole Telescope, or interviews with notable scientists in the field), and current events (with summaries from recent astronomical meetings, or discussions of hot topics like NASA press conferences). Astrobites even has a section devoted to publishing brief posts submitted by undergraduate readers summarizing their own research projects.

Formalizing Support for Educators

Astrobites is also expanding directly into the classroom. Educators began independently using Astrobites in their classes within the first year of the site’s formation. The Astrobites organization interviewed these educators early on and compiled a summary of their strategies for incorporating Astrobites into undergraduate classes. This summary appeared as a published article in the Astronomy Education Review (Sanders et al. 2012).
This year, the organization has moved to formalize its support for educators seeking to adopt Astrobites as an instructional tool. The 229th meeting of the American Astronomical Society in January 2017 marked the initiation of an Astrobites educator support workshop titled, “Introducing Current Research into Your Classroom.” The workshop brought together 25 instructors from higher-education institutes with a team of Astrobites graduate-student authors to discuss effective ways to use Astrobites in science classes and to brainstorm how the Astrobites collaboration can better support such use.

Classroom Strategies Summarized

The workshop covered three specific examples for how Astrobites could be incorporated into classes: providing Astrobites posts for reading assignments, having students conduct a research project based on Astrobites articles, and having students write their own Astrobites-style posts.

1. **Astrobites posts as reading assignments**

 In this activity, students are asked to read an assigned Astrobites article and respond to guided questions that test reading comprehension and conceptual understanding. This approach can be used as a way of supporting the fundamental topics covered in class with recent research results in the field. It also helps to expose students to the process of how science is done. One way these readings could be used is as pre-lab assignments, to connect lab activities to current research.

2. **Astrobites research projects**

 In this activity, students are asked to select a research topic and then identify and read several Astrobites articles related to that topic. Students then prepare a written paper or class presentation based on this independent research. In advanced courses, students can be asked to read the original paper as well, so that the Astrobites article serves as scaffolding to introduce them to that material. This activity allows students to explore a topic in more depth, providing them with access both to the context and the current research results related to that topic.

3. **Write your own Astrobite**

 In this project, designed with upper-level undergraduate or graduate classes in mind, students write their own Astrobites-like article to summarize the content of one or more research papers. This activity helps students build research, literature-understanding, and communication skills.

Materials Available

The educators at the workshop left with a full set of lesson-plan materials produced by Astrobites—including step-by-step instructions, suggestions for adapting the lessons to different class levels across the undergraduate and graduate spectrum, sample student handouts, and grading rubrics—as well as personalized discussions of how they could adapt these materials to their classes.

Meanwhile, the Astrobites collaboration gained direct feedback from educators on how to improve the above materials and their support for more effective use in undergraduate and graduate classrooms. The collaboration updated the lesson-plan materials based on the educator feedback, and they have now been published in the *American Journal of Physics* (Sanders et al. 2017). They are also publicly available on the arXiv (https://arxiv.org/abs/1706.01165). Naturally, this new paper has already been covered on Astrobites (https://astrobites.org/2017/06/11/astrobites-lesson-plans/).

Connecting with You

Since Astrobites’ launch, dozens of educators have sent in reports of how they have used the site with their students. Some have incorporated the site into undergraduate and graduate classes, some use the site to introduce new astronomy researchers to the literature, and several have even organized Astrobites-based journal clubs at their home institutions.

The Astrobites collaboration is delighted with the education community’s adoption of the site and is eager to continue to build this joint effort to augment astronomy and physics education with current research results. If you, too, are interested in using Astrobites in your classroom or at your institute, the Astrobites collaboration is here to help! And whether or not you’d like assistance, the team would love to hear about your experience.

You can contact the collaboration at astrobites@gmail.com.

References

Site: http://astrobites.org
Back on May 12th, 2016, the discovery of three planets around the star TRAPPIST-1 was announced—in classic imaginative astronomer fashion, the planets were named \(b \), \(c \) and \(d \). It was a big deal, leading to a Nature paper, a NASA press release, and some speedy follow-up work taking a look at the atmospheres of \(b \) and \(c \). The atmospheric studies confirmed that these two planets don’t host puffy and hydrogen/helium dominated atmospheres. This is notable, as a puffy hydrogen or helium atmosphere would make the planet uninhabitable. Incidentally, these were the first ever Earth-sized planets to have their atmospheres studied.

TRAPPIST-1 is an exciting system as it’s basically right in our astrophysical backyard: extremely close to us, at just 12 parsecs. For reference, even Alpha Centauri, the nearest star system to us, is 1.34 parsecs away. Not only does this make the system feel tangible, it also makes follow-up and characterization work much easier to carry out.

New planets!

As you may have read already, the new Nature paper that we’re discussing in this bite confirms the presence of several more planets in the TRAPPIST-1 system. The system now hosts seven planets, with orbital periods between 1.5 and 12 days. These planets are all confirmed directly by observing their transits—the dips of light as the planets pass directly in front of the star and block a small amount of the star’s light. These can be seen in Figure 1. The first two planets, \(b \) and \(c \), are the same as in the previous paper. The authors do find, however, that the two transits previously ascribed to the \(d \) planet are actually two different planets! An extended period of observations from various ground- and space-based observatories confirms the presence of four different planets: \(d \), \(e \), \(f \) and \(g \). Finally, a potential seventh planet, \(h \), is also observed—but only one transit of this planet is seen, so it is a more tentative detection. Bored of the alphabet yet? Figure 2 shows the planets graphically instead—or try this interactive tool: https://exoplanets.nasa.gov/newworldsatlas/1969/.

Planet tug-of-war

Dynamically, it’s very interesting to observe such a tightly packed system. For context, if the system was superimposed on our own system, all seven planets would all be closer than Mercury. The planets orbit in a so-called mean motion resonance, where the orbits of neighboring planets are all small-integer ratios (\(b \) to \(c \) is 8/5, \(c \) to \(d \) is 5/3, etc.) and their closely matched orbits likely stabilize each other. These dynamic interactions mean that strong Transit Timing Variations (TTVs) are observed. In other words, the transits happen up to half an hour ‘early’ or ‘late’ on each individual orbit, as they are pulled and pushed by their neighboring planets. This is useful to us, since it allows the masses to be measured. Without the TTV data, only the radii of each planet could be inferred from the transit data. The first six planets are confirmed to be rocky planets based on their masses and radii, although the composition of \(h \) is yet to be determined since only one transit has been observed and this makes the TTV analysis impossible for now!

Water, water everywhere?

This system is particularly exciting as all seven planets are predicted to have equilibrium temperatures in the range where water is liquid. In other words, they’re considered to be in the habitable zone. Exoplanet climatology isn’t quite as simple as all that, though! TRAPPIST-1 is a tiny M-dwarf star, just 8 percent the mass of the Sun. As previously stated, the planets are all in very small orbits, with a full orbit taking 1.5 days for the closest planet and just 12 days for the furthest out planet. Interestingly, the smaller, fainter star coupled with these short orbits means that these planets receive pretty similar levels of radiation from their star as the solar system planets do from the Sun (Figure 3). As the authors point out, planets \(c \), \(d \) and \(e \) are exposed to very similar levels of radiation as Venus, Earth and Mars, respectively.

Since the planets are all so close to their star and are in such close proximity, they are likely tidally locked, as is the case for hot Jupiter type systems. In addition, the authors of the paper simulate the climates of each planet. They find that the \(b \), \(c \) and \(d \) planets are
SETI, the Search for Extra-Terrestrial Intelligence, has already pointed its antennae towards TRAPPIST-1, just in case there are aliens trying to talk to us. Of course, the success of this mission would rely on (a) the planets being habitable, (b) the planets being inhabited, (c) the alien life having evolved to intelligence and (d) that intelligence emitting the sort of signals SETI look for. Well, it’s worth a shot, anyway!

Looking further ahead, next-generation ground-based telescopes like the European Extremely Large Telescope, set to be completed in 2025, will be able to detect water on these planets and carry out further atmospheric characterization.

It’s certainly clear that TRAPPIST-1 will be under a lot more scrutiny in the near future!

So, what next?

As it happens, the Kepler Observatory is actually staring at this system right now: it has a 70-day campaign on this patch of sky, from December 15th 2016 through to March 4th 2017. The Kepler data will be made publicly available immediately after the campaign. Not only does this mean you can get your hands dirty playing with the data if you like, but you can also bet that several exoplanet teams around the world will be itching to do some of their own analysis. We’re certainly likely to be hearing more science from the system soon! [Editor’s Note: This data is now available at http://archive.stsci.edu/k2/trappist1/]

The James Webb Space Telescope will almost certainly have a go at characterizing these atmospheres after it launches in 2018. However, this is going to be hard work. David Wilson wrote an Astrobite (https://astrobites.org/2016/05/26/searching-for-signs-of-life-with-the-james-webb-space-telescope/) about the difficulties observing the atmospheres of TRAPPIST-1 b and c, and the situation for the new planets is likely to be similar.

Figure 2. A graphic representation of the seven orbiting planets. The gray zone indicates the region where the authors hypothesize oceans would be able to form. Credit: ESO/M Gillon et al.

Paper Title: “Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1”

Authors: Michaël Gillon, Amaury H. M. J. Triaud, Brice-Olivier Demory et al.

First Author’s Institution: Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Belgium

Status: Published in *Nature*, doi:10.1038/nature21360

Figure 3. A comparison of the TRAPPIST-1 system and our own solar system. Planets are shown by radius and incident solar flux, with the Earth and Venus also indicated. The flux of Mercury, Mars and Ceres is also shown, with their radii being too small for the y-axis of this plot. Reprinted by permission from Macmillan Publishers Ltd: Nature. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1, Nature, 542, 456–460 (23 February 2017), copyright 2017.
In 2014, the American Institute of Physics published the first edition of the Career Pathways Project. This National Science Foundation–funded project developed and assembled a comprehensive set of tools to help physics and astronomy majors identify and secure careers after finishing their bachelor’s degrees. This work was profiled in the Spring 2014 issue of Radiations as “Taking the ‘Hidden’ out of ‘Hidden Physicists’.” Since this first edition, countless students have participated in Career Pathways workshops led by faculty and staff and gone on to successful careers in a wide range of fields. Many departments have taken the additional step of embedding the material into their curriculum to ensure their students have this critical information prior to graduation. However, as we all know, good things can always be made better, so the Career Pathways team has reassembled to develop the Careers Toolbox for Undergraduate Physics Students & Their Mentors—Version 2.0.

In addition to a new visual identity, the updated guide will encourage more independent use by students and feature the following enhancements:

- Updated statistics from AIP’s Statistical Research Center on where physics bachelor degree holders go after graduation, typical starting salaries, and an overview of knowledge and skills regularly used by physics bachelor degree holders employed in the private sector.
- Improved guidance for students from their first year of college through (and beyond!) graduation.
- Sample resumes and tips on how to stand out in an interview.
- Updated tools to help students articulate their achievements and skills.
- Increased emphasis on seeking out and engaging in experiences including student organizations, internships, research, service-learning, and projects.
- Detailed discussions on the appropriate use of a CV versus a resume.
- Redesigned worksheets and exercises to support independent student work.

Whether you are on the job market yourself or have an aspiring physics major in your life, we encourage you to check out Careers Toolbox 2.0 and make use of its resources!
Physics students heading down the path to becoming professors, researchers, engineers, teachers, programmers, and other professionals in the modern age are entering a diverse and exciting employment landscape—a landscape that many feel unprepared to navigate.

What skills and knowledge should the next generation of undergraduate physics degree holders possess to be well prepared for a diverse set of careers?

This is the question posed to the Joint Task Force on Undergraduate Physics Programs (J-TUPP), a group of leaders in physics academia, industry, and education that was convened in 2014 by the American Association of Physics Teachers and the American Physical Society and supported by the National Science Foundation.

“What skills and knowledge should the next generation of undergraduate physics degree holders possess to be well prepared for a diverse set of careers?”

J-TUPP tackled this question by synthesizing information from an array of reports and studies that address the career paths taken by physics bachelor’s degree recipients and the skills and knowledge valued by today’s employers. Their findings are detailed in a new report, Phys21: Preparing Physics Students for 21st Century Careers.

Aimed primarily at physics department leaders, the report compiles the knowledge, skills, and attitudes that graduates need for successful careers; learning goals that physics departments can adopt to promote their graduates’ success; and descriptions of ways that physics departments, professional societies, and funding agencies can ensure that those learning goals are being met. It also highlights why paying attention to career preparation is important in the first place—the ways in which doing so can enrich and diversify departments, empower students, and support local communities.

Phys21 doesn’t promote overhauling core physics content, rather, it suggests a variety of ways in which departments can intentionally incorporate skills like technical writing, project management, teamwork, and computer programming into existing courses while using industry-standard software. To this end, the report includes case studies of physics departments of different sizes and scopes already incorporating these skills into the major in various ways.

“To better prepare students in this way does not require that a department abandon the rigorous technical education that physicists take pride in,” write cochairs Paula Heron (University of Washington) and Laurie McNeil (University of North Carolina at Chapel Hill) in the report. “It does, however, require that physics faculty members become informed about the skills and knowledge valued by potential employers of their graduates, and that departments make appropriate modifications to curricular and cocurricular aspects of their programs.”

Phys21 and its case studies highlight several ways in which departments can work with alumni and local physicists to better prepare students for 21st century careers. If you are a Sigma Pi Sigma member interested in giving back to the physics community, perhaps one of these ideas will resonate with you:

- Volunteer to give a colloquium or informal talk to your local physics department or SPS chapter.
- Invite local departments to tour your place of work or attend relevant events on your campus.
- Recruit interns and recent graduates from among local physics departments.
- Check in with physics faculty members at your alma mater and let them know where your career has taken you, the skills your industry looks for in new hires, and how you’d like to support current students.

To learn more and download Phys21, visit http://www.compadre.org/jtupp/.
I’m a physicist who invents practical applications and then builds businesses around those applications. Because of my physics background, I look at every problem as a potential solution waiting to be found.

I started and run a software company, Allurdata Inc., that provides software solutions to the healthcare industry. Lowering the total cost of care with better outcomes has been and continues to be our mission. In order to do this, I invented a software framework that can be applied to just about any disparate data system and bring data normalization and analytics to the forefront.

Currently, we are working on goggles that can reveal signs of human diseases when the wearer’s eyes are examined. This project is the result of an offer to tutor an optometry student from my alma mater in physics. The student had written a paper on wavefront technology and optometry applications. After reading this paper, I immediately started thinking about what problems this technology could solve.

I also started and run an energy company, Gravaton Energy Resources, that aims to bring low-cost, sustainable energy to market. I invented a system that takes daily air temperature changes and converts those changes into mechanically stored energy that can be released later to power devices such as generators or pumps. As temperatures change every day, everywhere, this is 100% sustainable. I was inspired to create this system after observing how my hot lunch reacted to the Tupperware it was in. One of the first things I learned in the physics lab was to observe what is happening around me.

Running multiple companies is a challenge, especially when they are so different, but I hire really good people and provide them with the tools they need. I’m available to be in the trenches, but my primary focus is company visionary and inventor. I provide the overall strategy and we all make it happen!

I’ve always had an entrepreneurial attitude. At a young age, I would follow my grandmother on her egg route and sell homemade cookies to her clients. (I was 5 at the time, and the cookies were made of mud.) I’ve also been lucky in that I’ve had some great business and personal mentors along the way. One of the main reasons I mentor and provide scholarships today—to honor those who gave to me. Solving business problems is a lot like solving physics problems: you have parameters that need to come together to formulate an answer and you go through a logical progression to do so. The world has pretty much an unlimited supply of problems, and physicists at all levels are educated and trained to solve problems. It seems obvious that we need more people studying physics. There is no better foundation for life than a degree in physics. You can be and do just about anything.

“I look at every problem as a potential solution waiting to be found.”

“There is no better foundation for life than a degree in physics.”

I believe in giving back to the communities in which I live, and therefore feel it is my duty to help support physics students in whatever manner I can. I have done this by tutoring physics and calculus, sponsoring student travel to PhysCon, and setting up scholarship opportunities.

One of my proudest accomplishments in academia was helping to get Sigma Pi Sigma and the Society of Physics Students to Mesa State University (now Colorado Mesa University) while I was a student there. I still wear my gold pin with pride.
Do you want a great conversation starter? Become a medical physicist! Most people I meet ask me the same follow-up question, “You’re a what?!” I think it’s one of the perks of my title because I get to be the first person to teach them what a medical physicist does! As a medical physicist, I solve new and interesting problems every day. My role in the department is to monitor the safety and efficiency of radiation treatments for our cancer patients. I use my physics background to monitor and calibrate our radiation equipment, implement new technology, and find solutions to technical issues with our systems.

Every patient is unique, so our goal is to come up with the best individualized plan to shrink the tumor, prevent future disease spread, and/or relieve the patient’s pain. To get the job done, we work as a cancer care team—the radiation oncologist who prescribes the treatment, the radiation oncology nurse who manages the patient’s day-to-day care, the dosimetrist who creates the treatment plan, the radiation therapist who positions the patient for their daily radiotherapy treatment, and, of course, the medical physicist. My role in the group is to provide quality assurance throughout the process. On top of that I work with equipment vendors, engineers, IT specialists, state regulators, and even housekeeping! Coordinating with all of these people is often challenging, but my role as a physicist is to ensure the patient’s safety is preserved. I need to make sure that all of the important information is relayed to everyone involved in our patients’ care.

On top of working with a variety of people, I get to work with a wide range of equipment. We use cutting-edge technology to deliver treatment in different ways. For example, we can treat the patient with radiation externally from a linear accelerator, or internally with brachytherapy. I need to be an expert in each of these special techniques so I can detect anything from a minor malfunction to a major error. This can be a challenge, especially when multiple problems come up at once. One thing I’ve learned through my work experience is that it is okay to not always know what to do right away! Sometimes I have to do my research and find alternative solutions with the resources I have available.

Ultimately, though, I get to use physics fundamentals to directly help people stand up to cancer. This is the most rewarding feeling, because I know I am doing something that makes a difference during the most difficult time of a person’s life.

“It is okay to not always know what to do right away! Sometimes I have to do my research and find alternative solutions with the resources I have available.”

Photo courtesy of Melissa Lamberto.
Congratulations to the newest members of Sigma Pi Sigma

Abilene Christian University
Kaylin Baker
Reuben Byrd
Jacob Caughfield
Eric Hamilton
Brett Hunter
James Johnstone

Adelphi University
Allan Delarosa
Natasha Mohan
Kristen Oldja
Tracy Paltoo
James St. John

Angelo State University
Michael Burt
Alyssa Davenport-Herbst
Jose Duran
Anselm Beske
Deyton Riddle
Axel Jacquesson
Alyssa Davenport-Herbst

Appalachian State University
Erika Brescia
Jennifer Buring
Andrew Eagle
Deyton Riddle
Ashley Wellman

Auburn University
Ryan Barker
Joshua Gardner
Cary Laird
James Malloy
Martin Wang

Augustana College
Zayne Blumberg
Daniel Janus
Samuel Toten
Matthew Tuttle-Timm

Austin College
Sophie Anderson

Austin Peay State University
Megan McCracken
Jo Lynn Tyson
Jamin E. Welch
Konstantin Y. Yakshin

Ball State University
Manar Alenezi
Maha Alossiami
Tuffaha Alshammari
Dustin Carter
Brendan Ferris
Dylan Griffith
Kyle Jones
Robin Klauser

Binghamton University, State University of NY
Jaymes Flourney
Noam Hiltzik
Bradley Phelps
Vincent Plisson
Mathew Reed
Peter Tomlinson

Bloomsburg University of PA
Michael Algeo
Adam Beck
Richard Guschik
Ian Lamey
Harrison Ludewig
Timothy Mackiew
Robert Sherman
Anastasia Timofeeva

Baylor University
Andrew Baas
Christopher Channess
Casey Heshele
Raquel Karch
Nick Larson
John Lawrence
Taylor Robinett
Adrianna Smith

Benedictine College
John Beckman
Benjamin Bogner
Aidan Gara
Marie Rioux
Nathaniel Strandquist

Berea College
Kwastone Myint

Berry College
Alex Crouchman
Alexandra Skinner
Chris Whitmore

Bethel University
Nathaniel Anderson
Reese Ferrin
Isaac Goetzman
Tanner Hermanson
David Huffman
Greta Knemelkamp
Johanna Kolbow
Aaron Ludwig
Joseph Nelson
Benjamin Schindler
Andrew Schwartz
Stephen Self
Nicholas Stone
Sarah Thordal
Aidan Tollefson
Daniel Uppcraft
Erik Vaage
Nathan Wahlberg

Bucknell University
Matthew De Santis
Caroline Edelman
Nathan Wagner

Buffalo State University
Caitlin Horvaths

Butler University
Jeffrey Bannister
Michael Wiedl

Bridgewater College
Sean Albers
Ocean Armstrong
Alexis Czarnatowicz
Allen Ervin
Jeremy Gingrich
Jeremy Pannebakker

California Polytechnic State Univ., San Luis Obispo
Kevin Armenta
Brandon Fields
Frank Gonzalez
Jacob Hass
Philip Hatcher
Matthew Kehrle
Ryan Lau
Donald Loveland
Joshua Mann
Aidan McCuekin
Caroline Paciaroni
Jessica Pilgram
Hannah Simons
Tomas Snyder

California State University, Chico
Christopher Ard
Eric Ayars
Charri Cabalnson
Tori Goff
Robert Keen
Nicholas Nelson
Elizabeth Pham

California State University, Northridge
Behnam Amlashi
Paul Talledo
Blake Tinoco

California State University, Sacramento
Mark Samuel Abbott
Moses Ayetisyan
Caleb Mosakowski
Carlos Perez
Cordell Sagin-Lawson
Juan Sorio
Aleksandar Tadic

Carthage College
Stephen Janke
Ashley Marquette
Michael Merritt
Jordan Rice

Central Michigan University
Jacob Davison

Central Washington University
Jessica Carder
Jacob Rothschild

Chesapeake College
William Hellman
Anh Nguyen
Reuben Russak-Pribble
Isaac Vock
Tyree Wilmorth

Chicago State University
Felicia Davenport
Keenan Lambert
Calvin Powell
Denzel Tucker

Christopher Newport University
Daniel Carpenter
Matthew Lomicka
Lydia Lorenzi
Ralph Marinaro
Katie Shults

Coe College
Ugur Akgun
Dahila Baker
Garrett Binhanh
Chevelle Boompershot
Anthony DeCeanne
Firdevs Duru
Victoria Eng
Gregory Goukas
Hanna Koster
Scott Michalek
Dalton Shadle
Ian Tillman
Collin Wilkinson

Colby College
Sam Arthur
Yohannes Asega
Kathryn Butler
Thomas Cleary
Tarini Hardikar
John Leahy
Yuxuan Li
Alan Ottenstein
Calvin Robbins
Kenny Robbins

Colgate University
Zachary Cleary
Irish Duria
Katherine Karnes
Jonathan Kudler-Flam
Eric Palmertduca
Zachary Weaver

College of Charleston
Tristan Aft
Sam Bleser
Manuel Canas
Elyana Crowder

California Lutheran University. Photo courtesy of Earl Blodgett.

SPS Historian Earl Blodgett (far left) with the new initiates of Sigma Pi Sigma at California Lutheran University. Photo courtesy of Earl Blodgett.
Radiations Fall 2017

Denison University
Jitao Cui
Adrian Miller
Nicholas Pellar
Julia Proctor
Nicholas Staniszewski
Gan Xu
Shuheng Zhao

DePauw University
Melinda Franke
John Sampson

Dickinson College
Christopher Fritz
Jiahao Han
Sean Jones
Tyler Richey-Yowell
Kevin Skowronski

Dillard University
Pierre Desil
Wydgif Dorlus
Dr. John Estick
Daniel Jagessar
Shanahia Johnson
Shaylenn Moore
Jovan Roaches-Lambey
James Watson
Jamaya Wilson

Doane University
Eric Bird
Haoxuan (Martin) Huang
Braden Knuth
Sarah Vaughan
Taylor Wehrs

Drew University
Ashley Bloodgood
Michael Clancy
Jenny Soter

Duquesne University
Victoria Leonard
Adam Sneath
Jonathan Stachuck
Jason Weideman

East Central University
Ryan Cloud
Taylor Cass
Michel Moore
Kylee O’Dell

Eastern Kentucky University
Ralph Eastham
Aldo Garcia-Guinto
Justin Greaves
Mason Reeves
Love Richburg

Eastern Michigan University
Paul Amell
Donald Anderson
John Davis
Blake Hendrix
Dominic Lesniak

Florida International University
Gabriel Casabona
Justin Cata
Luis Fernandez
Cynthia Nunez
Mario Olavres
Francesco Sessa

Florida State University
Griffin Bradford
Eric Brit
Leon Hostetler
Alejandro Sanchez

Elabigo Beyer
Aleeyah Colbert
Liam Coverdale
Dillon Dorson
Dominic Giancarlo
Samuel Hirshberg
Matthew Koerber
Hui Liu
Nolan Ovelman
Evan Pallante
Alec Proffitt

Elnon University
Julia Filiono
Brian Matejjevich
Erin Murnane
Sydney Schilling

Embry-Riddle Aeronautical University
Mark Beach
Miles Bengson
Sergei Biliard
Edmund Cintron
Eliza Gada
William Griffin
Liam Gunter
Stanimir Letchev
Adam Moss
Sarena Robertson
Shane Srebrler
Logan Turco
Anissa Zacharias

Emory-Riddle Aeronautical University, Prescott
Zoe Crain
Leah De Laurell
Ryan MacLeod
Stephen McMillan
Calley Tinsman

Emory University
Zhao Fang
Junghyun Kim

Fairfield University
Robert Cordery
Andrew Danick
Robert Davis
Connor Gleason
Thomas Greenwood
Robert Hansen
Joshua Heilweil
Ravina Hingorani
Karim Kharbouch
Christina Ochoa
Brandon Thomas
Dennis Turano

Florida Southern College
Savannah Miller

Fort Hays State University
Rodrigo Bauza
Brendan Burgee

Fort Lewis College
Dylan Bunn
Lane Schultz

Frostburg State University
Allen Benton
Caleb Godwin
Nicholas Huff
Brian Leech

Furman University
Charles Garner
Cameron Grondines
Zachary Miller
Mark Perry
Amber Vargas

Georgia College and State University
Allison Jacques
Nicolas Merino
Matthew Pearson
Allison Wilkinson

Georgia Institute of Technology
Rachel Barker
Kevin Choi
Nathan W. Moore
Ellie Sitz

Georgia Southern University
Elizabeth Ashwood
Anne Delua
Benjamin Eller
William LePain
Xiaomeng Wang

Georgia State University
Colten Cross
Christopher Thurman

Grand Valley State University
Brandon Aho
Dai Lynn Dietz
Bailey Greengyde
Thomas Killeen

Grove City College
Samuel Beiler
Seth Byard
Iaac Hendrickson
Connor Murphy
Caleb Nasman
Hannah Tack
Emily Tharnish

Gustavus Adolphus College
Mikaela Algren
James Bork
Nathan Huber
Nicholas Hulstrand
Derek Hunley
Grace Kerber
Ian McKeag
William Rihlhaoma
Rochelle Widmer

Henderson State University
Luke Geoffrion
Arden Hall
Trevor Hicks

Hillsdale College
Christos Giannakopoulos
Laura Salo

Hofstra University
Laura Bennett
Zurana Calbo
Michael Nino

Hope College
Von Bunell
Daniel Clark
Jason Gombas
Emily Josses
Caleb Sword

Houston Baptist University
Maz Ahmed
Hamza Bhalil
Qunhy Do
Otto Gadea
Francisco Herrera
Henry Ho
Audrey Le
Colton Roath

Sigma Pi Sigma members at Florida International University providing tutoring for students in introductory courses.

Photo courtesy of Florida International University SPS chapter.
Metropolitan State University and University of Colorado – Denver each chartered new chapters and welcomed their first classes of initiates in 2017. Photo courtesy of Metropolitan State University.
Shota Hodono
Austin Howell
Carly Mathewson

Ohio University
Zachary Bernsen
Zak Blumer
Ari Blumer
Brandon Coleman
Taylor Gardner
Esther Grossman
Joseph Pincura
Sara Sand
Justin Warren

Ohio Wesleyan University
Joseph Emerson
Shoata Fukamachi

Old Dominion University
Daniel Ens
Alexander Maddock
Amethyst Maps
Juan Rodriguez

Oregon State University
Yousif Almulla
Bethany Bachmeier
Ryan Bailey-Crandell
Matthew Ball
Benjamin Bauml
Hazel Betz
Gregory Brandt
Elliot Capek
Nicholas Cassar
Katelyn Chase
Karandeep Cheema
Rafid Chowdhury
Kelida Diffendaffer
Patrick Flynn
Darlene Focht
Michael Forkner
Jesse Hanson
Cassandra Hatcher
Isaac Hodges
Ryan Liebke
Timothy Mangan
Ikaika McKean-McFadden
Jeremy Meinke
McKenzie Meyer
Chris Miranda
Austin Mullins
Michael Nehab
Gabriel Nowak
Evan Peters
Jesse Rodriguez
Heidi Schellman
Tanner Simpson
Abraham Teklu
Megan Tucker
John Waczak

Penn State Erie, The Behrend College
Christopher Goodteacher

Pittsburg State University
Georgette Searan

Presbyterian College
Musashi Briem
Ellen D’Amico
Jonathan Turnley
Salem Wright

Providence College
Claire Kleinschmidt

Radford University
Jacquelyn Burnus
Joshua Carroll
Liuni Chen
Morgyn Church
Teagan Eaker
Logan Fisher
Ryan Fry
Timothy Milloff
Nicholas Schrecongost
Matt Van Shufflin
Nick Whisler

Randolph College
Yuriy Snyder

Randolph-Macon College
Todd Baker
Shawn Barry
Gregory Beale
Ashley Easterling
Jacob Hickman
Alex Keller
Rebecca McGilvery
Susan Snee

Rensselaer Polytechnic Institute
Hunter Belanger
Ethan Brown
Peter Craig
Edwin Trurt Aguirre
Andrew Cupo
Andrew DiBasio
George Dowhan
James Flaming
Jennifer Freedberg
Zachary Harris
Ravi Panse
Alan Pearl
Natalya Shermereyeva
Leaf Swordy
Humberto Terrones
Esther Wertz
Madison Wyatt
Anthony Yoshimura

Rhodes College
Jordan Ankersen
McKenna Davis
Madsen Duke-Bruchert
Luke Fairbanks
Eleanor Hook
Matthew Huber
Saad Khalid
Mary Kate Meacham
Joel Michelson
James Stuckey
Taechen (Leo) Zhou

Ripon College
Robert Appleton
Robert Enright
Nay Htet
Jacob Thompson

Roanoke College
David Matheny
April Raab
Damian Reamer

Robert Wesleyan College
Matthew Van Nickerk

Rochester Institute of Technology
Nicholas Bitten

Frank Schooner
Lucas Shadler
Samuel Zimmerman

Rockhurst University
Cesar Aldana
Chelsea Anderson
Natasha Angel
Katie Boyce
Elizabeth Buddle
Ella Burrows
Lauren Cairo
Jolee Clement
Qunyu Do
Nancy Donaldson
Siena D’Souza
Leah Hibbeler
Carly Hill
Brittany Jack
Peyton Johnson
Joey Lipoff
Mary Maxwell
Mike McCoy
Hanna Meek
Zoe Otterman
Matthew Rancilio
Kevin Rasch
Madison Roberts
Grant Ruediger
Justin Saint
Trace Shaprio
Skylar Smith
Adam Soya
Nicole Strecken
Courtney Trausch
Brandi Vollmer
Clinton Wallis

Rollins College
Chloe Keeler
Evan Rapone
Eric Rokni

Rowan University
Timothy Baker
Jesse Buchan
Judah Lizza
Sean Zimmerman

Saint Bonaventure University
Andrew Church
Alexander Mazanek
Jennifer Morris

Saint Mary’s College of Maryland
Woodrow Dunlap
Mary Korendyke
Jacob Mahnke
Brigid Morris
Noah Walsh

Saint Mary's University
Jackson Kramlinger
Thomas Ripplinger
Raul Rodriguez
Paul Stewart

Saint Michael's College
Abigail Bolduc

Salisbury State University
Kyle Baumann
Bradley Coon
Kenneth Hill
Paul Komiske

Sam Houston State University
Andre Guimaraes

Santa Clara University
Bryan Berggren
Abel Millan
Matthew Queen
John Weiss
Zack White

Seattle University
Oleskis Khomenko
Spencer Schiefelbein
Caleb Schmidt
Zev Underwood

Seton Hall University
Brandon W. Barnes
Daniel Cummings
Matthew Feurer
Tyler Lucas
Claire Lundberg
Angelique McFarlane
Tyler McVeigh
Brooke Myers
Daniel Platek
Connor Sampson
Moses Tumuna

Sewanee: The University of the South
Mohammad Kabir
Adrian Tritic

Shippensburg University
Nathan Bishop
Bradley Foreman
Thomas Held
John Manley
Samantha McGuigan
Daniel Rosen
Amy Tosten

Siena College
Nico Calello
Jackson Dunn
Madeline Hagen
Torri Halaquist
Matthew Johnson
Kristin Ludwicki
Stefano Mainella
Nicole McAdams
Meghan McDonough
Ryan Mikulec
Clare Reilly
Sandra Spicer
Coley Stillman
Jacqueline Van Slycke
Lauren Wood

Skidmore College
Martin Bedulsij
Kelly Cantwell
Matthew Cocke
Joshua Hannan
Samantha Kenah
Benjamin Rosen

Skidmore College
Martin Bedulsij
Kelly Cantwell
Matthew Cocke
Joshua Hannan
Samantha Kenah
Benjamin Rosen

Slippery Rock University
Jacob Ciafre
Adam Giovanelli
Dean Ketterer
Kimberly Matsinger
Nick Reamer
Timothy Samec
Bailey Miller
Melanie Rex
Thomas Vogel

Stevens Institute of Technology
Nicolas Campanore
Jonathan Eugenio
Katrina Guido
Christian Haddad
Samuel McElung
Evan Rzeznik
Chen Yang

Stockton University
Nicholas Branco
Alexis Di Mercurio
Alyssa Prince
Alexander Roubos
Bryan Scheeler

SUNY - Oneonta
Ryan Crean
Thomas McNamara
Michael Russo
Andrew Schottmann
Evan Trenkle

SUNY - Plattsburgh
Narges Pirouzi
Matthew Jenkins

SUNY - Potsdam
Jillian Dolder

Susquehanna University
Claire Whipp

Tarleton State University
Jack Etpander
James Florencio
Colby Larue
Kassie Marble
Jace Willis

Texas A&M University - Commerce
Zach Auringer
Madelyn Cox
Joseph Doke
Christopher Dupuis
Klay Fuller
Arun Guma
Tyroe Sheehan

Texas Lutheran University
Michael Pokornik
Campbell Saint-Vincent
Michael Wall

Texas State University
Colin Donnelly
Salomon Gallegos
Noel Gamez
Kevin Krouse
Kimberly Moreland
Katrina Vermillion

Texas Tech University
Deven Bhakta
Ganesh Chauлагain
Aashish Gupta
Taylor Ryhan
Rachel Smith
Anvar Szulczyk
Ceren Uzun

The Citadel, The Military College of South Carolina
Hayden Fry

The College of Brockport, State
University at NY
Mayuka Sasaki
Christopher Wahl

The George Washington University
Andrei Afanasiev
Dartagnan Howell
Obinna Ome Oniodi
David Plotnick
Tiffany-Rose Sikorski
George Younes
Kara Zielinski

The Johns Hopkins University
Robert Barr
Lance Corbett
James Dumewood
Austin Hopkins
Edward Li
Brent Page
Wenzer Qin
Derek Reitz
Lynn Stanwyck
Chenxiao Zeng

The Ohio State University
Christian Anderson
Matthew Collier
Daniel D’Agostini
Joseph Delmar
Nicholas Kudsieh
Benjamin Sipe

The University of Scranton
Christian Anderson
Matthew Collier
Daniel D’Agostini
Joseph Delmar
Nicholas DePierro
Nicholas Kudsieh
Benjamin Sipe

Towson University
Hamna Ali
Bryan Augstein
Grant Burgess
James O’Connell
Seth Tihado

United States Air Force Academy
Kuo-Liang Cheng
Sean Chi
William Cook
Prayant Hanjra
Eli Harmon
Ala Lenn
Liza Matson
Tristan Naranjo
Kirk Olson
Brandon Pierce
Joshua Reding
Donald Sakowicz
Christopher Tulip
Jeremiah Wells
Shawn Willis

United States Military Academy at West Point
Matthew Anderson
Marcos Arroyo
Jonah Blas
Christina Bouvier
Ian Greer
Michael Lee
Peter Meyers
Calvin Nguyen
Thomas O’Connell
Jacob O’Neill
Garrett Simon

United States Naval Academy
Michael Bundas
Kenneth Hicks

Noah Shinn
Angelo Visco
Chase Zikmund

South Dakota State University
Kyle Schroeder

Southeast Missouri State University
Pratibha Bhattarai
Tebra Esner
Emily Koballa
Colten Peterson
Varun Sadaphal

Southern Illinois University Carbondale
Daniel Dilley
Justin Ramsey

Southwestern Oklahoma State University
Sushant Bhatta
Jaxon Taylor
Boubacar Waïne

Spelman College
Ashlee Gordon
Christopher Oakley

St. John’s University
Claire Alvine
Ryan Cooney
Zacarias Imperial
Seychelle Khan
Frank Obermeyer
Richard Rios
Derrick Schaefer
Tetyana Skazko
Michael Solis

St. Lawrence University
Claire Albrecht
Isabel Bogacz
Ellie Borovick
Morgan Doyle
Alan Idelkope
Stephanie Johnson
Emma Kitchner
Dustin Ramsay
Malakia Takane
Alexandra Wagner

St. Olaf College
Sam Bender
Kieran Berton
Nellie Brovold
Jae Hong Choi
James Dawson
Sage Fulco
William Gustafson
Ian Sutherland

Stephen F. Austin State University
Kaleb Fields
Michael Flowers
Daniel Orea
Marlon Walls

Stetson University
Paige Benson
Anand Dwivedi
Patrick Goetz
Samantha Harris
Holley Lynch

Wayne State University
Balaji Narayanan
Pranav Ravi
Siddharth Rao
John Robinson
Dylan Switzer
Joseph Tadros
Nicole Tomei
Rubab Ume
Trevor Wager
Tristan Wilkinson
Cameron Ziegler
Bayley Zuber

The Johns Hopkins University
Robert Barr
Lance Corbett
James Dumewood
Austin Hopkins
Edward Li
Brent Page
Wenzer Qin
Derek Reitz
Lynn Stanwyck
Chenxiao Zeng

The Ohio State University
Christian Anderson
Matthew Collier
Daniel D’Agostini
Joseph Delmar
Nicholas Kudsieh
Benjamin Sipe

The University of Scranton
Christian Anderson
Matthew Collier
Daniel D’Agostini
Joseph Delmar
Nicholas DePierro
Nicholas Kudsieh
Benjamin Sipe

Towson University
Hamna Ali
Bryan Augstein
Grant Burgess
James O’Connell
Seth Tihado

United States Air Force Academy
Kuo-Liang Cheng
Sean Chi
William Cook
Prayant Hanjra
Eli Harmon
Ala Lenn
Liza Matson
Tristan Naranjo
Kirk Olson
Brandon Pierce
Joshua Reding
Donald Sakowicz
Christopher Tulip
Jeremiah Wells
Shawn Willis

United States Military Academy at West Point
Matthew Anderson
Marcos Arroyo
Jonah Blas
Christina Bouvier
Ian Greer
Michael Lee
Peter Meyers
Calvin Nguyen
Thomas O’Connell
Jacob O’Neill
Garrett Simon

United States Naval Academy
Michael Bundas
Kenneth Hicks

Noah Shinn
Angelo Visco
Chase Zikmund

South Dakota State University
Kyle Schroeder

Southeast Missouri State University
Pratibha Bhattarai
Tebra Esner
Emily Koballa
Colten Peterson
Varun Sadaphal

Southern Illinois University Carbondale
Daniel Dilley
Justin Ramsey

Southwestern Oklahoma State University
Sushant Bhatta
Jaxon Taylor
Boubacar Waïne

Spelman College
Ashlee Gordon
Christopher Oakley

St. John’s University
Claire Alvine
Ryan Cooney
Zacarias Imperial
Seychelle Khan
Frank Obermeyer
Richard Rios
Derrick Schaefer
Tetyana Skazko
Michael Solis

St. Lawrence University
Claire Albrecht
Isabel Bogacz
Ellie Borovick
Morgan Doyle
Alan Idelkope
Stephanie Johnson
Emma Kitchner
Dustin Ramsay
Malakia Takane
Alexandra Wagner

St. Olaf College
Sam Bender
Kieran Berton
Nellie Brovold
Jae Hong Choi
James Dawson
Sage Fulco
William Gustafson
Ian Sutherland

Stephen F. Austin State University
Kaleb Fields
Michael Flowers
Daniel Orea
Marlon Walls

Stetson University
Paige Benson
Anand Dwivedi
Patrick Goetz
Samantha Harris
Holley Lynch

Wayne State University
Balaji Narayanan
Pranav Ravi
Siddharth Rao
John Robinson
Dylan Switzer
Joseph Tadros
Nicole Tomei
Rubab Ume
Trevor Wager
Tristan Wilkinson
Cameron Ziegler
Bayley Zuber

The Johns Hopkins University
Robert Barr
Lance Corbett
James Dumewood
Austin Hopkins
Edward Li
Brent Page
Wenzer Qin
Derek Reitz
Lynn Stanwyck
Chenxiao Zeng

The Ohio State University
Christian Anderson
Matthew Collier
Daniel D’Agostini
Joseph Delmar
Nicholas DePierro
Dawn Dorris
Christopher Gasper
Megan Glassell
Bradley Hodouosek
Peter Kulick
Benjamin Loya
Richard Ouchen
Matthew Reynolds
Noah Rigenbach
Joshua Zadyoko

Towson University
Hamna Ali
Bryan Augstein
Grant Burgess
James O’Connell
Seth Tihado

United States Air Force Academy
Kuo-Liang Cheng
Sean Chi
William Cook
Prayant Hanjra
Eli Harmon
Ala Lenn
Liza Matson
Tristan Naranjo
Kirk Olson
Brandon Pierce
Joshua Reding
Donald Sakowicz
Christopher Tulip
Jeremiah Wells
Shawn Willis

United States Military Academy at West Point
Matthew Anderson
Marcos Arroyo
Jonah Blas
Christina Bouvier
Ian Greer
Michael Lee
Peter Meyers
Calvin Nguyen
Thomas O’Connell
Jacob O’Neill
Garrett Simon

United States Naval Academy
Michael Bundas
Kenneth Hicks
New Sigma Pi Sigma initiates from the University of Washington Bothell. Photo Credit: Holly Gummelt.
More than 3 Million fans.
Make sure you aren’t missing out! Like us now.

https://www.facebook.com/PhysicsToday/
AIP Mather Public Policy Internships

DONATE NOW
Help ensure that this program continues in perpetuity

The AIP Mather Public Policy Internship program has sponsored two Society of Physics Students members to work on Capitol Hill each summer since 2009. The interns work in the office of a member of Congress or for a congressional committee, gaining extraordinary insight into the political process. Dialogue between scientists and policymakers is more important now than ever—donate today!

https://donate.aip.org/mather-internships