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Abstract.  Numerical  methods  of  physics  analysis  require  specialized  forms  of  programming  as  well  as  attention  to  issues                   
of  implementation.  PhysiCL  is  a  Python  package  that  aims  to  provide  general-purpose  tools  for  performing                 
OpenCL-accelerated  physics  simulations  with  ease.  PhysiCL  contains  a  Numpy-based  code  units  system,  a  set  of  generic                  
simulation  tools,  built-in  tools  for  photon  scattering,  tools  for  measuring  light  behavior,  and  tools  for  writing  new                   
OpenCL-based  simulation  features.  This  package  can  be  installed  via  PyPI  using   pip  install  physicl ,  and  found                  
on   GitHub   with   source   code   and   examples   at    https://github.com/bcwarner/physicl.     

I NTRODUCTION   

PhysiCL  is  a  Python  library  that  utilizes  OpenCL  to  accelerate  physics  simulations,  and  it  is  intended  to  make                    
writing  physics  simulations  easier  for  both  students  and  researchers.  Currently,  the  feature  set  is  designed  primarily                  
to  work  with  simulations  involving  light  scattering,  and  future  work  may  expand  it  beyond  this.  We  shall  examine                    
the  basic  usage  of  PhysiCL,  its  OpenCL  metaprogramming  tools,  its  code  units  system,  and  its  base  light  scattering                    
system.     

F EATURES   

Basic   Simulation   Operation   

FIGURE   1.    Outline   of   a   basic   simulation   conducted   using   PhysiCL.   (a)   Outline   of   a   general   simulation,   with   the   area   left   of   
the   dashed   line   showing   what   the   end   user   controls   and   the   right   showing   what   is   abstracted   away   from   the   end   user.   (b)   Outline   
of   the   operation   of   a    Step    in   PhysiCL.   A   Python   or   OpenCL   is   run   depending   on   whether   OpenCL   is   turned   on   by   the   user.   
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At  the  root  of  the  PhysiCL  package  is   Simulation .  It  is  primarily  defined  by  an   exit  condition ,  two  values                     
representing   and  ,  an  OpenCL  context  and  command  queue,  a  list  of   Object s  and  a  list  of   Step s.  When  we   t∆   t                   
call   start —which  will  call   run  on  a  separate  thread—some  setup  is  performed.  We  set   and   to  zero,  get  the                t   t∆      
starting  timestamp,  and  initialize  a  list  for  keeping  track  of  s  that  were  simulated.  Then,  while  the  exit  condition            t          
returns  false,  we  call   run  on  each   Step .  After  the  exit  condition  returns  true,  we  call   terminate  on  each   Step                      
for  it  to  perform  any  clean  up.  An  overview  of  this  process  appears  in  Fig.  1a.  Each   Step  utilizes  three  main                       
methods,   __init__ ,   run ,  and   terminate ,  as  well  as   __run_cl  and   __run_python .  The  first  is  used  to                  
initialize  the   Step ,  the  second  one  is  used  when  the  simulation  runs  each   Step ,  and  the  third  one  is  called  when                       
the  simulation  is  finished  running.  The  last  two  are  called  to  run  the  simulation  using  a  parallelized  OpenCL                    
implementation  or  native  Python  implementation,  which  allows  for  the  comparison  of  their  relative  performance.                
Users  who  wish  to  write  new   Step s  will  primarily  modify   __init__  and   run ,  in  addition  to  both   __run_cl                    
and   __run_python  if  such  a  comparison  is  desired.  An  overview  of  a  typical  process  the  latter  three  functions  are                     
used   in   is   shown   in   Fig   1b.   

There  are  two  primitive  steps  in  the  root  module  of  PhysiCL.  The  first,   UpdateTimeStep ,  is  initialized  with  a                    
function  that  takes  the  simulation  as  an  argument,  determines  what  should  be  and  updates   accordingly.  The            t Δ     t    
second,   MeasureStep ,  is  a  generic  class  for  measuring  the  states  of  simulations  that  subclasses  will  override  as                   
needed.  In  general,  users  will  extend   MeasureStep  or  one  of  its  subclasses  to  measure  behavior,  and  user                   
extensions  upon   Step  will  represent  state-altering  behavior.  Another   Step  worth  noting  is              
physicl.newton.NewtonianKinematicsStep ,  which  updates  the  position  of  objects  according  to  their            
velocity.   

OpenCL   and   Metaprogramming   

PhysiCL  relies  on  OpenCL  and  PyOpenCL 3  to  achieve  accelerated  computation,  and  uses  metaprogramming               
techniques—where  new  code  is  generated  dynamically—in  concert  to  provide  increased  speed  in  developing  and                
executing  simulations.  OpenCL  is  a  library  that  allows  for  parallel  computing  on  a  variety  of  devices,  using                   
programs  known  as   kernels. 1,2  Kernels  may  be  metaprogrammed  using  PhysiCL’s   CLProgram .   CLProgram              
represents  a  partially  written  OpenCL  kernel  as  well  as  the  Python  code  needed  to  provide  it  input  and  retrieve                     
output.  There  are  two  stages  to  metaprogramming  using   CLProgram .  OpenCL  kernels  must  be  compiled  before                 
they  are  used,  and  when  we  first  need  to  build  our  kernel,  we  call   build_kernel .  When  this  function  is  called,  a                       
completed  OpenCL  kernel  is  generated.  From  there,  we  can  call   run —which  is  done  from  within  a   Step —and  the                    
appropriate  Python  code  to  collect  input  data  and  run  the  kernel  will  be  generated.  After  the  kernel  finishes,  the                     
resulting   output   of   the   kernel   is   then   used   to   update   the   simulation   as   needed.   

Measurements   

FIGURE   2.    Three   examples   of   the    Measurement    class   demonstrating   dimensional   analysis   and   unit   conversions.   (a)   
Examples   of   binary   and   unary   operations.   (b)   Example   of   two   automatic   unit   conversions.   

  
This  subclass  of  Numpy’s   ndarray 7  represents  an  array  of  numbers  that  follows  the   code  units  scheme,  which                   

is  where  we  scale  units  up  or  down  to  avoid  floating  point  precision  loss.  Instances  of  this  class  are  initialized  with                       
two  parameters,   raw_value ,  and   units .   raw_value  can  be  another   ndarray ,  another   Measurement ,  or  a                
list  mixed  with  numbers  and  other   Measurement s.   units  is  a  string  representing  the  units  of  the  value,  which                    
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are  written  as  their  corresponding  symbol,  either  the  Python  power  symbol  (**)  or  a  caret  (^),  and  the  dimension  of                      
the   unit.   

The  scaling  process  starts  by  determining  what  units  are  being  used.  After  isolating  these  units,  they  are                   
recursively  converted  to  their  defining  units  until  they  have  been  reduced  to  the  7  fundamental  SI  units.  After  this,                     
we  convert  these  fundamental  units  to  the  code  scale  units. 4  Each  of  these  code  scale  units  carries  a  scaling  factor,                      
which  is  used  to  affect  the  scaling  of  all   Measurement s  that  rely  on  the  same  fundamental  units.  We  multiply  each                      
element  of  our  array  by  this  scale.  We  store  these  dimensions,  as  well  as  the  dimensions  of  the  original  units  used  for                        
use  whenever  a  string  representation  is  needed.  Each  of  the  7  fundamental  SI  units  can  be  scaled  up  or  down  using                       
set_code_scale ,  as  seen  in  Fig.  2a.  Currently,  it  is  designed  so  that  it  can  only  be  done  once,  before  any  related                       
modules  are  imported.  This  is  to  optimize  for  speed,  as  performing  checks  to  see  if  two   Measurement s  have  the                     
same  scale  can  be  costly;  however,  it  may  be  possible  to  use  something  akin  to  a  counter  to  keep  track  of  the  current                         
scale.  After  it  is  set  up,  it  may  be  operated  on  by  directly  calling  one  of  Numpy's   ufunc s—such  as                     
numpy.square 5 —or  by  utilizing  the  corresponding  Python  operator,  generating  results  with  the  appropriate              
underlying  units  and  scale,  as  seen  in  Fig.  2.  It  will  not  cancel  or  reduce  any  original  units  passed  to  it  for  speed;                         
however,   a   future   implementation   may   reduce   units   lazily   when   a   string   representation   is   needed.   

Photon   Scattering,   Measurement,   and   Generation   

  
FIGURE   3 .   An   example   simulation   involving   isotropic   scattering   around   an   approximation   of   the   upper   half   of   Earth’s   

atmosphere   with   a   photon   distribution   resembling   that   of   the   Sun,   as   well   as   output   displayed   in   matplotlib.   (a)   A   segment   of   the   
necessary   code   to   set   up   a   simulation   involving   a   beam   of   photons   being   scattered,   namely   the   creation   of    PhotonObject s   
drawn   from    planck_phot_distribution .   (b)   Another   segment   of   the   necessary   code   required   to   set   up   the   simulation,   

including   the   addition   of    Steps    and    PhotonObjects .   (c)   The   resulting   paths   of   a   beam   of   photons   as   they   travel   towards   an   
object   with   arbitrarily   high   density.   

  
Currently,  the  main  feature  of  this  package  are  the  tools  for  photon  scattering  and  measurement,  which  are  in  the                     

physicl.light  module.  It  includes   ScatterDeleteStep  and   ScatterIsotropicStep ,  which          
represent  photon  absorption  and  isotropic  scattering,  respectively.  It  also  includes   ScatterMeasureStep ,  which              
measures  photons  passing  through  specified  planes,   ScatterSignMeasureStep ,  which  measures  the  quantity             
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of  photons  with  a  positive/negative  sign  along  any  axis,  and   TracePathMeasureStep ,  which  tracks  the  path  a                  
photon   takes.   

The  first  class,   ScatterDeleteStep ,  represents  the  scattering  of  photons  as  if  they  were  being  absorbed  into                  
a  medium.  It  assumes  that  the  medium  has  a  specified  uniform  number  density,  ,  and  cross-sectional  area,               ntarg     

,  throughout  the  entire  simulation  space.  When  this  step  is  run,  it  finds  all   PhotonObjects   within  the  Atarg                  
simulation,  and  collects  the  s  for  all  photons.  It  also  generates  a  random  number  in   for  each  photon,  and      rΔ            0, )[ 1      
allocates  two  lists,  one  pointing  to  the  photons  examined,  and  another  for  the  results  of  the  OpenCL  kernel  it  will                      
run.  The  kernel  will  find  ,  and  if   is  greater  than  the  random  number  generated  for  a       A ΔrP coll = ntarg targ    P coll           
particular  photon,  then  it  will  be  marked  for  removal.  After  the  OpenCL  kernel  returns,  the  marked  photons  are                    
deleted   from   the   simulation.   

ScatterIsotropicStep  represents  the  scattering  of  photons  as  if  they  were  being  refracted  into  a  random                 
direction.  Like   ScatterDeleteStep  it  assumes  a  consistent   and   throughout  the  entire  simulation,         ntarg   Atarg      
however  the   may  be  varied  with  an  OpenCL  expression,  and  if  the  user  desires,  scattering  may  also  be    ntarg                  
dependent  on  the  wavelength,  as  occurs  with  Rayleigh  scattering.  When  this   Step  is  run  it  first  collects  the   for                    r∆   
each  photon.  It  then  generates  a  random   that  will  be  used  to  derive  a  new  direction  for  the         ∈[0, π), ∈[0, )  θ 2 ϕ π             
photon  to  go,  and  a  random  number   rand  .  Next,  it  collects  the  original   for  the  photons;  if          0, )  ∈ [ 1       v→     
wavelength-dependent  scattering  is  on,  it  collects  each  ;  and  if  variable   is  on,  it  collects  the  current   of         Eγ     ntarg        r   
each  photon.  Then  when  the  kernel  is  completed,   ScatterIsotropicStep  will  apply  the  changes  calculated  in                 
the  kernel.  If  the  velocity  was  changed,  the  photon  will  have  its  .  An  example  of  this  in  use  can  be              vΔ ← vnew − vold          
seen   in   Fig.   3.   

ScatterMeasureStep  measures  the  total  quantity  of  photons  within  a  simulation,  as  well  as  the  number  and                  
energies  of  photons  that  pass  through  a  plane  at  a  given  point  in  time.  When  initialized,  the  user  may  decide  whether                       
they  want  the  total  quantity  of  objects  to  be  measured,  coordinates  for  the  planes  where  we  should  measure  photons                     
passing  through,  and  whether  the   ScatterDeleteStep  should  also  record  the  energies  of  the  photons  passing                 
through.   ScatterSignMeasureStep  measures  the  number  of  objects  within  a  simulation  as  well  as  the  number                 
of  objects  whose   have  values  greater  than  zero.   TracePathMeasureStep  tracks  the  position  of  each     , ,vx vy vz             
object  throughout  a  simulation.  When  this  step  is  run,  it  iterates  through  each  object  in  the  simulation  and  performs                     
several  steps.  If  the  current  object  in  the  iteration  does  not  have  a  unique  identifier,  it  assigns  one.                    
TracePathMeasureStep  then  records  the  starting  time,  creates  a  list  to  store  positions,  and  if  the  user  desires,                   
the  frequency  with  which  the  photon  changed  velocity.  Then,   TracePathMeasureStep  records  the  current               
position  of  the  object,  and  if  the  velocity  changes,  increments  the  accumulator  representing  the  frequency  of  velocity                   
changes.  After  the  simulation  is  complete,   TracePathMeasureStep  compiles  the  data  collected  into  a               
two-dimensional  array  representing  the  s  that  were  recorded,  with  each  row  represents  an  individual  object,  the      t             
number  of  times  its  velocity  changed  if  desired,  and  finally  all  positions  that  were  recorded  for  each  time.  An                    
example  of   TracePathMeasureStep  can  be  seen  in  Fig.  3,  where  its  output  data  is  graphed  to  show                   
atmospheric   refraction.   

In  addition  to  these  tools  to  simulate  and  measure  photons,  there  is   planck_phot_distribution ,  which                
randomly  generates  a  series  of  photon  energies  according  to  a  desired  segment  of  the  Planck  distribution.                  
planck_phot_distribution  works  by  finding  the  total  area  under  a  Planck  distribution  curve  for  a  desired                 
number  of  bins,  normalizing  the  total  area  under  these  bins  so  that  it  equals  1,  and  finally  randomly  picking  an                      
energy  bin  using  our  normalized  distribution.  There  are  also  two  other  ways  to  generate  photons.                 
generate_photons_from_E  takes  a  list  of   and  generates  new  photons  for  each  energy  given  with  a       Eγ            
velocity  of   in  the   direction.   generate_photons ,  takes  a  function  that  generates  random  numbers,    c    + x           
minimum   and   maximum   energies,   and   a   desired   number   of   photons,   and   returns   a   list   of    PhotonObjects .     
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