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Abstract.  We  present  a  numerical  technique  for  self-consistently  calculating  plasma  equilibria  with  prescribed  sources                
and  sinks  on  the  boundaries,  i.e.  a  scattering  system.  The  method  is  applied  to  the  earth’s  magnetotail.  The  method                     
follows  individual  particles  through  a  prescribed  magnetic  field,  while  calculating  the  density,  current  and  pressure  that                  
the  particle  contributes  on  a  uniformly  spaced  grid.  The  individual  particles  are  weighted  to  model  a  given  source                    
distribution  and  the  total  equilibrium  properties,  including  the  resulting  magnetic  field,  are  evaluated.  The  calculated  and                  
prescribed  magnetic  fields  are  then  compared.  If  the  fields  differ  significantly,  the  two  fields  are  mixed  and  the  process                    
repeated.   Convergence   to   the   self-consistent   field   typically   takes   between   100   and   150   iterations.   

I NTRODUCTION   

Determining  the  self-consistent  properties  of  a  plasma  equilibrium  is  typically  a  very  challenging  problem,  but  is                  
essential  for  determining  the  stability  and  wave  properties  in  the  plasma.  This  is  particularly  true  for  cases  where  the                     
scale  length  of  the  variations  in  the  plasma  are  on  the  order  of  the  ion  gyroradius  or  smaller.  One  common  method  is                        
to  choose  a  distribution  function  and  self-consistently  solve  the  Vlasov-Maxwell  equations  using  moments  of  the                 
distribution.  This  technique  has  produced  many  useful  results, 1-5  however  it  misses  the  effects  of  nonlinear/chaotic                 
particle  dynamics  on  the  distribution  function  and  resulting  equilibrium  and  stability.  Test  particle  simulations                
provide  an  alternative,  in  which  the  fields  are  assumed  to  be  known  and  a  distribution  of  particles  is  launched  from  a                       
source  region  and  pushed  through  the  given  fields. 6-9  Once  all  the  particles  in  a  source  distribution  have  moved                    
through  the  system,  the  total  average  density  (n),  current  ( j ),  pressure  tensor  ( Q ),  are  used  to  update  the  fields.  The                      
process  is  repeated  until  the  input  and  calculated  fields  are  in  agreement.  Test  particle  codes  are  well  suited  for                     
determining  equilibrium  solutions  with  good  spatial  resolution  using  a  relatively  small  number  of  particles,  but                 
cannot  yield  any  information  about  the  time  evolution  and  stability  of  the  calculated  equilibria.  The  resulting                  
equilibria  may  be  used  as  initial  conditions  for  Particle-in-Cell  simulations  that  can  evaluate  the  wave  and  stability                   
properties   of   the   system.   

T EST    PA RTICLE    S IMULATION   

A  fundamental  first  step  in  a  test  particle  code  is  to  compute  the  contributions  of  a  single  particle.  This  process  is                       
complicated  by  the  facts  that  the  particle  motion  is  in  general  chaotic  and  that  it  is  not  known  a  priori  how  long  a                         
particle  will  remain  in  the  calculation  region.  At  any  given  time,  however,  the  distribution  function  of  a  single                    
particle   is   formally   given   by   
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where   L  is  the  characteristic  scale  length  and   is  the  characteristic  frequency.  The  spatial  (velocity)  delta          Ω0          
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delta  function.  For  our  work  on  the  current  sheet,  L  and   are  taken  to  be  the  initial  scale  length  of  the  assumed             Ω0             
field  and  the  cyclotron  frequency  in  the  asymptotic  magnetic  field.  The  first  three  moments  of  the  distribution                   
(density( n ),   current( j ),   and   pressure   ( Q ))   are   calculated   as     
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Here  q  (m)  is  the  charge  (mass)  of  the  particle  and  we  have  defined  the  normalized  variables  and                  r L   ˆ = r/   

.  The  contribution  of  a  single  particle  to  the  equilibrium  quantities  is  obtained  by  averaging  instantaneous  Ω L  v̂ = v/ 0                 
values   along   the   trajectory   for   the   time,   T,   that   the   particle   is   in   the   system,   i.e.   
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where  W  is  any  velocity  moment  (n,   j ,   Q )  and  in  general,  T  will  be  different  for  each  particle.  Assuming  that  we                        
calculate  the  particle  position  and  velocity  at  equally  space  time  intervals,   so  that  ,  we  may             tΔ    ΔtT = N    
approximate   the   integral   as   a   finite   sum.    Thus   
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where    is  the  normalized  position  (velocity)  at  the  n th  time  step  and  is  the  Kroneker  delta  function.  Since     (v )r̂n n̂             δr,rˆ n̂

      
the  moments  will  be  interpolated  onto  a  grid,  it  is  important  that  the  time  step  be  chosen  sufficiently  small  so  that  a                        
particle  does  not  cross  a  complete  grid  cell  in  a  single  step.  The  sums  in  the  square  brackets  are  easily  calculated  by                       
linearly  interpolating  the  values  at  each  step  onto  the  grid  points  that  bound  the  cell  the  particle  is  in  during  a                       
particular  step.  An  extra  (guard)  cell  adjacent  to  the  calculation  region  must  be  included  to  ensure  the  proper                    
contributions  of  the  moments  to  the  edge  grid  points.  In  principle  this  process  can  be  applied  in  1,  2,  or  3                       
dimensions.   

As  a  particular  example  of  the  test  particle  method,  we  consider  the  magnetotail  current  sheet  where  we  use  the                     
GSE  coordinate  system  with  its  origin  in  the  center  of  the  earth,  the  x-direction  is  in  the  direction  of  the  sun,  y  is  in                          
the  dawn  to  dusk  direction  and  z  is  normal  to  the  ecliptic.  In  this  system,  the  magnetic  field  is  given  by                       

  where   is  a  smoothly  varying  function  that  asymptotes  to  ±1  as   For  the  case  B  f (z L)x z  B =  0 / ˆ + Bz ˆ   (z L)  f /            →±∞.z     
,  this  is  the  well-known  modified  Harris  model.  The  field  is  taken  to  only  vary  in  the  z-direction,  (z L) tanh(z L)  f / =  /                   

since   the   scale   lengths   in   x   and   y   are   much   longer   than   L.     
To  calculate  the  equilibrium  profiles,  we  choose  the  ion  source  distribution  function  in  the  asymptotic  region  to                   

be   a   drifting   Maxwellian,   i.e     
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where  is  a  constant,  T  is  the  ion  temperature  and   is  the  drift  velocity  along  the  field  line  C            vD =  √ m
2εT = √ m

2Edrif t          
given  in  terms  of  the  fraction,   ε ,  of  the  thermal  energy  and  .  Once  a  particle  has  escaped  from  the  system,              TEdrif t = ε          
the  single  particle  moments  are  weighted  such  that  the  density  at  the  top  grid  point  due  to  that  incoming  particle  is                       
unity  to  ensure  that  each  particle  has  equal  weight  in  the  phase  space.  To  guarantee  that  a  particle  contributes                     
properly  to  the  top  grid  cell,  it  is  launched  two  gyro-radii  above  the  guard  cell  and  is  considered  to  have  left  the                        
system  when  the  absolute  value  of  the  z-position  reaches  a  distance  of  two  gyro-radii  above  the  launch  point.  Once                     
all  of  the  particles  have  been  added  together,  the  total  moments  are  weighted  such  that  the  height  integrated                    
y-current  density  produces  the  proper  change  in  the  x-component  of  the  magnetic  field  given  by   (i.e.  from  -1                 (z l)  f /     
to  +1).  The  total  calculation  may  be  greatly  speeded  up  if  we  assume  identical  particle  sources  above  and  below  the                      



current  sheet,  since  we  may  then  use  the  symmetry  of  the  system  to  only  launch  particles  from  either  above  or  below                       
the  current  sheet  and  then  reflect  the  moments  across  the  z=0  plane.  As  a  common  first  approximation,  we  assume                     
that  the  electrons  are  sufficiently  mobile  so  as  to  provide  a  neutralizing  background.  Non-symmetric  sources  may  be                   
modeled  by  launching  separate  distributions  from  either  side  of  the  current  sheet. 9  Once  a  new  magnetic  field  has                    
been  calculated,  it  is  compared  with  the  initial  field.  If  the  fields  are  in  agreement,  we  end  the  simulation,  if  not,  we                        
mix  the  old  and  new  fields  together  and  calculate  a  new  input  field.  We  typically  use  95%  old  field  and  5%  new  field                         
to  ensure  convergence,  but  as  a  general  rule,  for  smaller  drift  velocities  a  smaller  percentage  of  the  new  field  is                      
required.   

To  convert  a  calculated  equilibrium  in  code  variables  into  physically  meaningful  quantities  we  begin  by  defining                  
,  where   R E   is  the  radius  of  the  earth  and   σ  is  a  constant  to  be  determined.  Assuming  a  proton  plasma  and  RL = σ E                       

using  the  definitions  of  the  moments  above,  we  find  that  ,  where  is  the  calculated  density            .036  σ = 0 √( n0

n̂top )  n t̂op      

in  the  top  grid  cell  and   is  the  asymptotic  particle  density  measured  in  .  Furthermore,  the  asymptotic        n0         cm 3−     

magnetic  field  is  given  by   where  is  the  ion  temperature  measured  in  keV  and   is  the  ion       14.1  B0 =  √n Tt̂op
ˆ
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temperature  in  code  variables.  The  results  for  the  case            .35 cm , T keV , E .1T  and B .1Bn0 = 0 3−  0 = 5  drif t = 0 0 z = 0 0  
are  shown  in  Figure  1  (a)-(c).  The  field  looks  very  much  like  the  Harris-magnetic  field,  but  the  density  is  almost                      
constant   throughout   the   reversal.     

In  figure  1(d)  and  (e)  we  show  how  the  peak  in  the  current  density  and  the  scale  length  of  the  field  reversal  vary                         
as  a  function  of  the  drift  energy.  Higher  drift  energies  result  in  more  peaked  density  profiles  and  thinner  sheets.                     
These  properties  may  play  an  important  role  in  the  next  phase  of  the  project  where  we  allow  for  more  complex                      
electron  models.  For  example,  if  the  electrons  are  taken  as  a  Boltzmann  distribution,  the  short  scale  length  and                    
peaked   density   may   result   in   a   significant   electric   field   in   the   z-direction   that   will   in   turn   modify   the   ion   dynamics.   

  

FIGURE  1.  Example  results  from  the  code.  (a)-(c)  are  the  self-consistent  magnetic  field,  current  density  and  particle  density  for                     
the  case  in  which   .  Frames  (d)  and  (e)  show  the  percentage  increase      .35 cm , T keV , E .1T  and B .1Bn0 = 0 3−  0 = 5  drif t = 0 0 z = 0 0          
in   the   peak   density   and   the   scale   length   of   the   field   reversal   as   a   function   of   the   drift   energy.   
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