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Abstract.  A  method  to  derive  general  standard  and  null  Lagrangians  for  second-order  differential  equations  whose                 
solutions  are  special  function  of  mathematical  physics  is  presented.  The  general  null  Lagrangians  are  used  to  find  the                    
corresponding  general  gauge  functions.  All  derived  Lagrangians  are  new  and  in  special  cases  they  reduce  to  those                  
published  in  the  literature.  The  obtained  results  are  applied  to  the  Bessel,  Hermite  and  Legendre  equations,  which  have                    
many   applications   in   physics,   applied   mathematics   and   engineering.     

INTRODUCTION   

Second-order  ordinary  differential  equations  (ODEs),  whose  solutions  are  given  in  terms  of special  functions               
(SFs)  of  mathematical  physics  [1,2],  have  many  important  applications  in  physics  and  applied  mathematics  as                 
shown  in  standard  textbooks  (e.g.,  [3]).   For  several  of  these  ODEs,  Lagrangians  were  previously  constructed  [4-6].                  
More  recently,  the  standard  and  non-standard  Lagrangians  for  the  ODEs  with  the  SF  solutions  were  derived  [7].   In                    
this  paper,  a  method  is  developed  to  derive  the  general  standard  Lagrangians  (SLs)  as  well  as  the  so-called  general                     
null  Lagrangians  (NLs),  which  identically  satisfy  the  Euler-Lagrange  (E-L)  equation  and  can  also  be  expressed  as                  
the  total  derivative  of  a  scalar  function,  also  called  a  gauge  function  [8].  The  SLs  depend  on  the  square  of  the  first                        
derivative  of  the  dependent  variable  (kinetic  energy-like  term)  and  the  square  of  the  dependent  variable  (potential                  
energy-like  term).  The  NLs  were  studied  in  mathematics  [9,10]  and  have  also  applied  to  elasticity  [11],  and                   
Newtonian  mechanics  where  they  were  used  to  introduce  forces  [12].  However,  the  role  of  the  NLs  in  ODEs  with                     
the  SF  solutions  has  not  yet  been  fully  explored;  doing  so  is  the  main  aim  of  this  paper.   Our  choice  to  focus  on  these                          
ODEs  is  justified  by  their  many  physical  applications  familiar  to  graduate  and  undergraduate  science  students.  Our                 
results  are  applied  to  the  Bessel,  Hermite  and  Legendre  equations  as  these  specific  SFs  are  used  in  many  physical                     
applications.  Therefore,  the  presented  results  should  be  of  interest  to  physicists,  applied  mathematicians  and                
engineers.   

GENERAL   STANDARD   AND   NULL   LAGRANGIANS   

Generalization   

Let   be  a  linear  operator  whose  coefficients   B(x)   and   C  (x)   are  ordinary  and   dx dx  D̂ = d2/ 2 + B (x) d/ + C (x)               
smooth   functions.  If   acts  on   y(x),   which  is   also  ordinary  and  smooth,  then  the  resulting  ODE  can  be  written   C )( ∞    D̂                  
in   the   following   explicit   form     

" B(x)y  C(x)y .  y +  ′ +  = 0 (1)   
  



By  specifying  the  coefficients   B(x)   and   C  (x),   all  ODEs  with  the  SF  solutions  are  obtained  and  for  these                     
equations  we  derive  the  SLs  and  NLs.  Let  L n  be  a  null  Lagrangian  and  L s  be  a  standard  Lagrangian  that  is  used  to                         
derive  an  ODE  with  the  SF  solutions.  The  NLs  described  above  imply  that  the  total  Lagrangian  L tot  given  by  L tot  =  L s                        
+  L n  leads  to  the  same  ODE  as  using  L s   only.  In  other  words,  the  addition  of  L n   does  not  change  the  outcome  when                          
the  E-L  is  applied.  In  this  paper,  we  develop  a  general  method  to  drive  the  standard  Lagrangians  together  with  a                      
new   family   of   NLs   that   are   used   to   find   the   corresponding   gauge   functions.     

The   starting   point   of   this   method   is   to   consider   the   general   Lagrangian:     
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where  ,  ,  and   are  ordinary  and  smooth  functions  to  be  determined.  This  Lagrangian  depends  on   f 1 (x)  f 2 (x)   f 3 (x)              
the  square  of  the  first  derivative  of  the  dependent  variable  (kinetic  energy-like  term),  the  square  of  the  dependent                    
variable  (potential  energy-like  term)  and  on  the  mixed  term  with  the  dependent  variable  and  its  derivative.                  
Substituting   the   above   Lagrangian   into   the   E-L   equation,   we   obtain:     
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and     into   we   find:  (x)f 3 L (y , , )′ y x ,   

L (y , , )′ y x = Ls (y , , )′ y x + Ln (y , , )′ y x (4)   
  

where   
         L c E   s (y , , )′ y x = 2

1
1 s (x) y[ 2′ (x) − C (x) y2 (x)] (5)   

  
and     

            L y   n (y , x)′ y′ = 2
1 (x) f[ 2 (x) y′ (x) + f2

1 ′
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with   being  a  combination  of  the  general  standard  Lagrangian  and  the  general  null   L (y , , )′ y x           Ls (y , , )′ y x      
Lagrangian  .  It  must  be  noted  that  generalizes  the  Caldirola-Kanai  (CK)  Lagrangian    Ln (y , , )′ y x        Ls (y , , )′ y x       
[13,14]  and  it  reduces  to  the  CK  Lagrangian  when   and   this  SL  also  describes  a           onst.B (x) = b = c   onst;C (x) = c = c       
harmonic   oscillator   with   time   dependent   mass   and   spring   constant.   

General   Gauge   Functions   

Having   obtained   the   general   null   Lagrangian,   we   now   derive   its   general   gauge   function     using:   ϕ  
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Which   gives,   

f  ϕ = 4
1

2 (x) y2 (x) . (8)   
  

With    f 2    (x)    being   arbitrary,   the   following   three   cases   may   be   considered:   

i)                 →L                                 f 2 = 0 S = LS,min (trivial case)  
ii)  onstant →L  f 2 = c mid = LS,mid + Ln,mid  

iii)                →Lf 2 = f ′1 max = LS,max + Ln,max  



Substituting   each   of   the   cases   in   our   gauge   equation   (8),   we   get   our   three-gauge   functions   respectively:   
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ii)  f y                   V ariable gauge functionϕ = 4

1
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iii)  c (x)                            Max variable gauge function           ϕ = ϕmax = 4
1

1 · Es (x) · B (x) · y2  

APPLICATIONS     

Applications   of   our   results   to   selected   ODEs   with   the   SF   solutions   are   summarized   in   the   following   table.   

                                                               TABLE   1.   

  
By   selecting     and     different   (regular,   modified,   spherical   and   spherical   modified)   Bessel   equations   are   obtained.  α , β γ  

CONCLUSION   

We  considered  the  linear  second-order  ODEs  whose  solutions  are  given  by  the  SF  of  mathematical  physics,  and                   
derived  general  standard  and  null  Lagrangians.  The  obtained  Lagrangians  are  new  and  they  generalize  those                 
previously  found.  The  derived  gauge  functions  are  also  new.  The  obtained  results  are  applied  to  the  Bessel,  Hermite                    
and  Legendre  equations,  thus,  they  are  of  primary  interests  to  physicists  and  applied  mathematicians.  The                 
presented   results   can   be   easily   applied   to   any   ODE   with   the   SF   solutions.   
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