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Abstract. A method to derive general standard and null Lagrangians for second-order differential equations whose
solutions are special function of mathematical physics is presented. The general null Lagrangians are used to find the
corresponding general gauge functions. All derived Lagrangians are new and in special cases they reduce to those
published in the literature. The obtained results are applied to the Bessel, Hermite and Legendre equations, which have
many applications in physics, applied mathematics and engineering.

INTRODUCTION

Second-order ordinary differential equations (ODEs), whose solutions are given in terms of special functions
(SFs) of mathematical physics [1,2], have many important applications in physics and applied mathematics as
shown in standard textbooks (e.g., [3]). For several of these ODEs, Lagrangians were previously constructed [4-6].
More recently, the standard and non-standard Lagrangians for the ODEs with the SF solutions were derived [7]. In
this paper, a method is developed to derive the general standard Lagrangians (SLs) as well as the so-called general
null Lagrangians (NLs), which identically satisfy the Euler-Lagrange (E-L) equation and can also be expressed as
the total derivative of a scalar function, also called a gauge function [8]. The SLs depend on the square of the first
derivative of the dependent variable (kinetic energy-like term) and the square of the dependent variable (potential
energy-like term). The NLs were studied in mathematics [9,10] and have also applied to elasticity [11], and
Newtonian mechanics where they were used to introduce forces [12]. However, the role of the NLs in ODEs with
the SF solutions has not yet been fully explored; doing so is the main aim of this paper. Our choice to focus on these
ODE:s is justified by their many physical applications familiar to graduate and undergraduate science students. Our
results are applied to the Bessel, Hermite and Legendre equations as these specific SFs are used in many physical
applications. Therefore, the presented results should be of interest to physicists, applied mathematicians and
engineers.

GENERAL STANDARD AND NULL LAGRANGIANS
Generalization

Let D= d*/dx* + B (x)d/dx + C (x) be a linear operator whose coefficients B(x) and C (x) are ordinary and

smooth (C*) functions. If D acts on y(x), which is also ordinary and smooth, then the resulting ODE can be written
in the following explicit form

y'+ B(x)y' + Cx)y = 0. (D



By specifying the coefficients B(x) and C (x), all ODEs with the SF solutions are obtained and for these
equations we derive the SLs and NLs. Let L, be a null Lagrangian and L be a standard Lagrangian that is used to
derive an ODE with the SF solutions. The NLs described above imply that the total Lagrangian L, given by L, _ L
+ L, leads to the same ODE as using L, only. In other words, the addition of L, does not change the outcome when
the E-L is applied. In this paper, we develop a general method to drive the standard Lagrangians together with a
new family of NLs that are used to find the corresponding gauge functions.

The starting point of this method is to consider the general Lagrangian:

L,y (0,0 =31 @y>+ 1,0 + 15 (05 ()

where f, (x), f,(x), and f5(x) are ordinary and smooth functions to be determined. This Lagrangian depends on
the square of the first derivative of the dependent variable (kinetic energy-like term), the square of the dependent
variable (potential energy-like term) and on the mixed term with the dependent variable and its derivative.
Substituting the above Lagrangian into the E-L equation, we obtain:
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Comparing (1) and (3) we get B (x) :? and C(x)= % (%fz _f3), which gives f, =c,e =¢,E; and
| .
: : . . . [ B(x)dx I
5= -21f2 -Cx)-f1= %fz —C(x) - (c,Ey), where ¢, is the integration constant and E; = e . Substituting f, (x)
and f5(x) into L(y,y,x), we find:
L, y,0) =L (¢, 7,0 + Ly (¢ ,,%) “4)
where
Ly (v,3,%) = 5¢,Es (0) [y (0) = C (1) y* (0] %)
and
L'y = 4y ) [/, 00y @)+ 3,0y 0] ©)

with  L(y',y,x) being a combination of the general standard Lagrangian L, (v,y,x) and the general null
Lagrangian L, (v,y,x). It must be noted that L, (', y,x) generalizes the Caldirola-Kanai (CK) Lagrangian
[13,14] and it reduces to the CK Lagrangian when B (x) = b = const. and C (x) = ¢ = const; this SL also describes a
harmonic oscillator with time dependent mass and spring constant.

General Gauge Functions

Having obtained the general null Lagrangian, we now derive its general gauge function @ using:

Ly = 360020 + 00000y () = 2 = Lle + L e ) (). (7)

Which gives,
@ =1, W0 W, ®)

With £, (x) being arbitrary, the following three cases may be considered:

iy f,=0 —Lg  =Lg,., (trivial case)

i) f,=constant —L, ,, = LS,mid + Ln’mid

i) f,=f, —Linax = Ly e + Lnnas



Substituting each of the cases in our gauge equation (8), we get our three-gauge functions respectively:
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i) 6=, = ;}cl “Eg(x) - B (x) - ¥ (x)

Applications of our results to selected ODEs with the SF solutions are summarized in the following table.

No gauge function
V ariable gauge function

Max variable gauge function

APPLICATIONS

TABLE 1.

Equation

L=Lg+L,

Ln,max
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By selecting o, B and y different (regular, modified, spherical and spherical modified) Bessel equations are obtained.

CONCLUSION

We considered the linear second-order ODEs whose solutions are given by the SF of mathematical physics, and
derived general standard and null Lagrangians. The obtained Lagrangians are new and they generalize those
previously found. The derived gauge functions are also new. The obtained results are applied to the Bessel, Hermite

and Legendre equations, thus, they are of primary interests to physicists and applied mathematicians.

presented results can be easily applied to any ODE with the SF solutions.
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