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Abstract 
Consider two separate tracks of equal horizontal displacements and equal initial and final heights. 

One track remains at this initial height while the other angles down, levels out, and then angles 

back up in order to regain its original height. Question: If two identical balls are set rolling with 

equal initial speeds, which ball completes the track in a shorter time interval? In this manuscript, 

the dynamics of a ball on each track are analyzed using basic Newtonian mechanics. We calculate 

the time necessary to complete each path in terms of the parameters of the track and the initial 

velocities of the balls. We derive an expression for the time difference between the two tracks and 

compare this to data taken on a set of high road/load road tracks, hence demonstrating the fact 

that the ball traversing the low road always wins the race. 
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I. INTRODUCTION
 

Consider two separate tracks of equal horizontal distance and initial and final heights. 
The flat track remains at this constant initial height while the second track dips down into 
a flat valley, hence following a longer path, before regaining its original height. An example 
of such a set of tracks is displayed in Fig. 1. Question: If two identical balls are set rolling 
with equal initial speeds, which ball completes the track in a shorter time interval? The ball 
that takes the deviated path into the valley will of course travel at a higher speed for much 
of the race, however, that ball has a longer distance to travel. On first glance, the answer 
may not seem at all obvious. One of us first encountered the aforementioned question/ 
demonstration at the 13th Workshop for New Physics and Astronomy Faculty where the 
workshop attendees failed to reach a consensus on the correct outcome prior to witnessing 
the demonstration. In fact, Leonard et. al. found that about two-thirds of introductory 
physics students wrongly predict that both balls will complete the track in equal times. One 
reason often cited for this prediction involves invoking conservation of energy to (correctly) 
identify that the ball will have the same initial and final speeds and conclude (incorrectly) 
that the balls must therefore tie. Further, about one-sixth of intro students incorrectly 
predict that the ball following the flat track will reach the other end first (as they travel the 
shorter distance). Only about one-tenth correctly identify that the ball following the longer 
path will in fact win the race [1]. A further study of students’ judgments concerning the 
outcomes of races involving such a pair of tracks is presented in [2]. 

The answer to the above conceptual question becomes obvious when the velocity com­
ponents are analyzed. When the dissipative effects of friction are ignored, the speed of the 
ball traversing the flat track remains constant. For the ball that follows the longer path, 
the horizontal component of the velocity is always equal to or larger than that of the speed 
of the ball on the flat track. This is due to the fact that the ball experiences a horizontal 
net force on the first diagonal section of the track causing the ball to undergo a horizontal 
acceleration. Although the ball does in fact experience a horizontal deceleration on second 
diagonal section, the ball’s horizontal component of velocity will always remain at or above 
the initial speed of the ball. Thus, the ball traversing the longer path always wins the race, 
regardless of the initial speed. This outcome is also independent of the breadth of the flat 
valley with a similar result emerging from a V-valley track [1, 2]. 

As is well known, Johann Bernoulli (1667-1748) found the solution of the path of shortest 
travel time between two points for an object under the influence of a constant gravitational 
force. This pioneering work began the study of the calculus of variations. In fact, the 
brachistochrone is often first introduced in an advanced undergraduate dynamics class as an 
example of an application of the calculus of variations. Since this original work, there have 
been several follow up analyses of generalizations of the brachistochrone and tautochrone 
including [3–11]. Several articles have been written highlighting the incorporation of the 
brachistochrone into the classroom, see for example [12–14]. 

Zheng et. al. considered a race involving beads of equal initial speeds on a straight and 
curvilinear path [15] and found that the outcome of the race was dependent on the initial 
speed (see [14] for a similar result involving spherical balls on a straight path vs. the brachis­
tochrone curve). This result differs from that of the high road/low road where the ball on the 
low road always wins, independent of the initial speed. This apparent inconsistency arises 
from the fact that the scenario of Zheng et. al. is fundamentally different than that of the 
high road/low road and can be understood in terms of the orientation of the initial velocity 
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vectors. For two non-parallel initial velocity vectors of equal magnitudes, the horizontal 
components differ and thus allow for a race dependent on the initial speed. 

In section II, we calculate the time interval for a spherical ball to traverse each track 
in terms of the parameters of the track and the initial speed of the ball. From this, one 
can easily construct the time difference. The derivation of the time interval of the low road 
consists of dissecting the track into five distinct regions and calculating the time needed 
to traverse each. In section III, we discuss the experimental design and setup of our high 
road/low road apparatus. In section IV, we discuss our experimental procedure and present 
the results as a plot of the time difference versus the average speed of the ball. 

FIG. 1: An example of a high road/low road track 

II. THEORETICAL ANALYSIS 

The two tracks studied here are equal in horizontal displacement and are symmetrical 
about their midpoints. Both tracks begin and end at the same initial height (hhigh,i = 
hlow,i = hhigh,f = hlow,f). The tracks differ in that one dips down in its midsection while the 
height of the other remains constant. Throughout this paper, low road will refer to the track 
that does in fact deviate in the midsection; high road will refer to the track that remains at 
constant height. A diagram of the first half of the low road is illustrated as the red line in 
Fig. 2, which includes other relevant track parameters. 

Each symmetric half of the low road is partitioned into five sections. The upper horizontal 
is the first flat reach that is level with the high road. This track then enters an area of 
constant radius of curvature, where the track deviates from the upper horizontal, before 
beginning the straight diagonal section. The track then enters another area of constant 
radius of curvature before reaching the second flat reach of the lower horizontal section. The 
radii of curvature of both arcs are identical and were conveniently designed and constructed 
to be equal to the elevation difference between the higher and lower horizontal sections of 
the low road. 

A. The Horizontal Sections of the High and Low Road 

We begin by first calculating the time needed to traverse the high road. As the ball 
undergoes zero acceleration, the time is simply given by 

L 
tH = , (2.1) 

v1 
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FIG. 2: Schematic of the first half of the low road. 

where v1 is the initial velocity of the ball. L is the total length of the track and can be 
written in terms of the parameters of the low road as 

L = 2(l1 + l2 + d + 2R sin θf ). (2.2) 

Calculating the time needed for the ball to traverse the low road is inherently more 
involved. As the track is symmetrical and the dissipative effects of rotational friction will 
be ignored in this theoretical treatment, we can calculate the time necessary to traverse half 
of the low road and multiply by a factor of two to obtain the total time. Furthermore, we 
divide the first half of the track into its five constituent parts, as can be seen in Fig. 2, and 
analyze each part in turn. The total time needed to traverse the low road, consequently, 
will be the sum of these individual times given by the relation 

5 

tL = 2 ti. (2.3) 
i=1 

As was the case for the entire high road, the time necessary for the ball to traverse the 
upper horizontal section of the low road is the length of the segment divided by the velocity. 
This time is given by 

l1 
t1 = . (2.4) 

v1 

We next analyze the lower horizontal section. In order to calculate the time needed for 
the ball to traverse the lower horizontal, we must first find the speed of the ball on this 
section. We find this speed by using the fact that the total mechanical energy is conserved, 
where again any energy loss due to rotational friction is neglected. Applying conservation 
of mechanical energy yields the expression 

1 2 1 1 2 1 
mgR + mv + Iω2 = mv + Iω2

2 , (2.5) 1 1 22 2 2 2 

where the moment of inertia of a spherical ball is 

I =
2 
mRb

2 , (2.6) 
5 

with Rb the proper radius of the ball. The angular velocity of the ball is proportional to the 
translational velocity and is 

v 
ω = , (2.7) 

Re 
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where Re is the effective radius of the ball, which differs from the proper radius. As the ball 
lies on two rails, the radius that connects the translational velocity to the angular velocity is 
the vertical distance between the point where the ball touches the rail and the center of the 
ball. See Appendix A for a more detailed discussion and derivation of this effective radius 
in terms of the proper radius. 

Inserting Eqs. (2.6) and (2.7) into Eq. (2.5), we obtain the expression 

    

  2   2
1 2 Rb 1 2 Rb2

1 v
 22.
 (2.8)
 mgR + m 1 +
 1 +
 v
 = m

2 5 Re 2 5 Re

Now, solving for the velocity of the ball on the lower horizontal in terms of the initial velocity 
is given by 

v2 = 
V

v2
1 + 2g ′R , (2.9) 

where 
  −1 

  2
2 Rb 

g ′ ≡ g 1 + (2.10) 
5 Re

plays the role of an effective gravitational acceleration and will be used throughout this 
paper. Having an expression for the velocity of the ball on the lower horizontal allows for a 
calculation of the time needed to traverse the lower horizontal in terms of the initial velociy. 
This time, in terms of the initial velocity of the ball and the parameters of the track, is given 
by the relation 

l2
(2.11)
 t2 =  .
 

2
1 + 2g ′Rv

B. The Upper Constant Radius of Curvature Section of the Low Road
 

The tangential acceleration of the center of mass of the ball on the upper constant radius 
of curvature section is dependent upon the angle subtended along the arc. Fig. 3 illustrates 
this scenario and includes a free-body diagram of the forces acting on the ball. 

Newton’s 2nd Law for translational motion in the centripetal and tangential directions 
are, respectively 

2mv

mg cos θ − n = (2.12) 

r 
mg sin θ − fr = macm, (2.13) 

where r = R + Re is the distance from the center of the radius of curvature of the track 
to the center of the spherical mass. fr is the static friction acting by the rails on the ball 
that produces rotation, acm is the acceleration of the center of mass of the ball. Notice that 
our analysis assumes that the ball never leaves the track. This remains true so long as the √ 
speed of ball is less than gr cos θ. For speeds larger than this, the normal force on the ball 
becomes zero and the ball leaves the track. 

The acceleration of the center of mass is related to the angular quantities by 

¨ ¨ acm = rθ = Reφ, (2.14) 
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FIG. 3: Schematic of the ball traversing the upper constant radius of curvature section. 

where φ ̈ is the angular acceleration of the ball about its center of mass. Newton’s 2nd Law 
for rotational motion yields the expression 

¨ frRe =
2 
mRb 

2φ. (2.15) 
5 

Substituting Eqs. (2.15) and (2.14) into Eq. (2.13) and rearranging, we arrive at the dynam­
ical expression 

dθ̇ g¨ θ̇
′ 

θ = = sin θ, (2.16) 
dθ r 

where we used the chain rule to connect the angular acceleration of the ball to its angular 
velocity. One can now separate variables and integrate to arrive at an expression for the 
angular velocity 

v1
2 2g ′ 

θ̇2(θ) = + (1 − cos θ) , (2.17) 
r2 r 

where we applied the boundary condition θ̇(0) = v1/r to obtain a value for the integration 
constant. The final velocity of the ball on the constant radius of curvature section takes the 
form 

V 
v(θf ) = v1

2 + 2g ′ r(1 − cos θf ), (2.18) 

which, consequently, will be the ball’s initial speed on the diagonal section of the track. 
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FIG. 4: Schematic of the ball traversing the diagonal section of the track. 

Eq. (2.17) can be further separated and integrated. One arrives at an integral expression 
for the time spent on the constant radius of curvature section given by 

 θf r dθ 
t = . (2.19) 

0 v1
2 + 2g ′ r(1 − cos θ) 

This integral is exactly solvable with the solution a hypergeometric function. To keep this 
analysis as simplistic as possible, we instead employ a small angle approximation and solve 
the integral perturbatively. To lowest order in θ 

1 − cos θ ≃ θ2/2. (2.20) 

For our track, this approximation amounts to a maximum percent error, when θ = θf , of 
∼1%. Using the above approximation, the integral yields an expression for the time spent 
on the constant radius of curvature section of the track 

 √ 
r g ′ r 

t3 ≃ sinh−1 θf . (2.21) 
g ′ v1 

C. The Diagonal Section of the Low Road 

Applying Newton’s 2nd Law to the ball on the diagonal in the parallel/perpendicular 
directions yields 

n − mg cos θf = 0 (2.22) 

mg sin θf − fr = x, m¨ (2.23) 

where x is the location of the center of mass of the ball along the diagonal path, as shown 
in Fig. 4. Assuming that the ball does not slip on the diagonal, the coordinates x and φ are 
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proportional and related by 
x 

φ = , (2.24) 
Re 

where φ is the angular displacement of the ball. 
Newton’s 2nd Law for rotational motion is again given by 

2
 
frRe = mR

5
 
2 
b 
¨
 φ. (2.25)
 

Substituting Eqs. (2.24) and (2.25) into Eq. (2.23) and rearranging yields the dynamical 
expression 

ẍ = g ′ sin θf , (2.26) 

where the effective acceleration of gravity, g ′ , was defined in Eq. (2.10). 
As the acceleration of the ball on the incline is constant, we can invoke the kinematic 

equations 

v = vi + aΔt 
1 

Δx = viΔt + aΔt
2 

2 

22 v = vi + 2aΔx (2.27)
 

to find the time needed to traverse the diagonal section. The initial velocity, vi, of the ball 
on the diagonal is known in terms of the initial velocity, v1, of the ball at the beginning of 
the track. Eq. (2.18) yields 

V 
vi = v2

1 + 2g ′ r(1 − cos θf ). (2.28) 

Plugging this into Eq. (2.27) gives the speed of the ball at the end of the diagonal section 

V√ 
v(x = h2 + d2) = v
21 + 2g ′[r(1 − cos θf ) + h]. (2.29) 

We now obtain an expression for the time to traverse the diagonal section of the track given 
by 

  

V

1 
V
 

2
1 + 2g ′[r(1 − cos θf ) + h] 2

1 + 2g ′ r(1 − cos θf ) (2.30)t4 = v − v

g ′ sin θf

in terms of the parameters of the track and the initial velocity of the ball. 

D. The Lower Constant Radius of Curvature Section of the Low Road 

A derivation of the time for the ball to traverse the lower constant radius of curvature 
section closely parallels that of the upper constant radius of curvature section. Newton’s 
2nd law for translational motion in the centripetal and tangential direction are 

2mv

n − mg cos θ = 

r̃ 
(2.31) 

mg sin θ − fr = macm (2.32) 
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FIG. 5: Schematic of the ball traversing the lower constant radius of curvature section. 

where r̃ = R − Re is the distance from the center of the radius of curvature of the track to 
the center of the spherical mass. Notice that θ is decreasing as φ, the angular displacement 
of the ball about its center of mass, is increasing. Thus, our angular quantities are related 
by where 

¨ ¨ acm = Reφ = −r̃θ. (2.33) 

Newton’s 2nd law for rotational motion is of the form 

¨ frRe =
2 
mRb 

2φ (2.34) 
5 

Inserting Eq. (2.34) for fr into Eq. (2.32) and rearranging, one obtains an expression of the 
form 

g ′ ¨ θ = − sin θ (2.35) 
r̃

Now following a process similar to that of section IIB, we find the time needed to traverse 
the lower constant radius of curvature section is 

 
   

r̃ g ′ r̃
t5 ≃ sin−1 , (2.36) 

2 θf
g ′ v1 + 2g ′R 

where we set our limits of integration from −θf to 0, again used a small angle approximation, 
and applied the final boundary condition Eq. (2.9) for the velocity. The velocity expressed 
in Eq. (2.9) is that of the ball’s as it traverses the lower horizontal section of the track. 
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E. Total Time Difference vs. Initial Speed 

We can now calculate the total time difference between transits of the high and low road 
for a given initial velocity. The total time difference is defined as the time interval needed 
for the ball to traverse the high road minus the time interval needed for the ball to traverse 
the low road 

Δt = tH − tL. (2.37) 

As the ball traversing the low road always wins the race, one expects Eq. (2.37) to be positive 
for all values of the initial velocity. In a previous subsection, it was found that the time for 
the ball to traverse the high road was given by 

2(l1 + l2 + d + 2R sin θf )
tH = . (2.38) 

v1 

The time needed for the ball to traverse the low road is found by summing the time contri­
butions from each of the five sections of the track and multiplying by a factor of two. The 
expression is of the form 

√ 
l1 l2 r g ′ r r̃ g ′ r̃

tL = 2 + + sinh−1 θf + sin−1 θf 
2 g ′ g ′ 2v1 v1 + 2g ′R v1 v1 + 2g ′R 

V V

2 
+ 

g ′ 
v1

2 + 2g ′[r(1 − cos θf ) + h] − v1
2 + 2g ′ r(1 − cos θf ) . (2.39) 

sin θf 

Although the above expressions are lengthy, it is important to notice that the time needed to 
traverse either track is simply a function of the initial velocity of the ball and the measurable 
parameters of the track. 

III. EXPERIMENTAL SETUP 

The high road/low road track was built as part of a senior research project in addition 
to the accompanying theoretical treatment presented in the aforementioned section and the 
data analysis presented in the next. A pair of rails were fashioned so that a steel ball nested 
on them as illustrated in Fig 7. The rails were constructed from quarter-inch steel rod. The 
shape of the lower track was engineered by bending the two rails to match a template laid 
out on a board. Trusses were built and welded vertically to the rails in order to support the 
tracks. Spacers were then welded at roughly 7 in. intervals in order to maintain an equal 
spacing between the rail pairs. A ramp was welded to one end of each track, which allows 
for a variety of speeds to easily be obtained. This is accomplished by simply varying the 
initial height of the ball on the ramp. The base of the track consists of a straight 2 in.×10 
in.×10 ft. long piece of lumber. For support, holes were drilled into the wood to receive 
the ends of the trusses. An image of the track is displayed in Fig. 1. Table I shows the 
quantitative specifications of the track. 

Measurements of the initial and final speed of the ball and the time interval needed 
for the ball to traverse a given track were made via Pasco Photogates and a Data Studio 
interface system. A photogate works by measuring the time interval that an infrared light in 
a given gate is blocked. From this measurement, Data Studio can then easily calculate the 
average speed of the object as it moves through a gate by comparing this time interval to 
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Track parameters Symbol Value 

Total Length 

Upper Horizontal 

Lower Horizontal 

Radius of Curvature 

Rise of Diagonal 

Run of Diagonal 

Deviation Angle 

Radius of Ball 

Effective Radius of Ball 

Radius of Rail 

Distance Between Rails 

Effective Gravitational Acceleration 

L 

l1 

l2 

R 

h 

d 

θf 

Rb 

Re 

Rr 

w 

g ′ 

3.00 m 

0.28 m 

0.91 m 

0.10 m 

0.09 m 

0.24 m 

0.37 rad 

0.0135 m 

0.0093 m 

0.0033 m 

0.0179 m 

5.29 m/s2 

TABLE I: Parameters of Track
 

the flag length, which here equates to the diameter of the ball. Photogates can also measure 
the time interval between the activation of two successive gates. A set of photogates was 
placed on each track for a total of four gates. One photogate was positioned at the start 
of each track and was used to obtain the initial speed of the ball. A second photogate was 
positioned at the end of each track. This second photogate yielded the final speed of the 
ball and allowed for a measurement of the total time interval needed for the ball to traverse 
a given track. The gates were carefully positioned to ensure that both sets spanned equal 
horizontal distances. It was also important that the gates were placed at the same height 
above the track so to be tripped by the same relative location of the ball. For an accurate 
flag length, the infrared light in the photogate obviously needed to align with the ball at its 
widest point. 

The total drag due to the rotational friction of the ball-track interaction and the velocity-
dependent air resistance results in a slowing of the ball as it traverses the track. Hence, the 
speed of the ball as measured by the second photogate can be significantly smaller than that 
measured by the first. For smaller speeds, this slowing plays a more significant fractional 
role. As our theoretical determination of the time difference, as summarized in Eqs. (2.37)­
(2.39), neglected the dissipative effects of friction, our data is expected to deviate from the 
theoretical curve. To account for the dissipative effects, we use the average speed, as obtained 
from the measured initial and final speeds, as numerical input for v1 in the theoretical curve 
displayed in Fig. 6. It should be noted that in the limit of vanishing frictional effects, the 
average speed and v1 become equivalent. 

IV. EXPERIMENTAL PROCEDURE & DISCUSSION 

Data from the experiment was first collected on the low road. The desired range of 
speeds was probed by releasing the ball from rest at a chosen initial ramp height. The ball 
was then allowed to traverse the track. Data Studio displayed values for the initial and 
final speeds and the time interval necessary for the ball to traverse the track. From this 
data, the average speed could be calculated for a given time interval. We repeated several 
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low road track runs with the intent of covering the widest range of speeds possible, while 
obtaining proper representation of the intermediate speeds. The minimum speed recorded 
corresponded to the ball that just finished the track with vanishing speed; the maximum 
corresponded to that where the ball just remained in contact with the track. For speeds 
above this maximum, the ‘hum’ of the ball on the track would lessen as the ball traversed 
the upper constant radius of curvature section thus coming unattached. These data points 
were discarded as our theoretical analysis demands that the ball stay in contact with the 
track. 

Time Difference vs. Average Velocity 

0 

0.5 

1 

1.5 

2 

�t[s] 

0.6	 0.8 1 1.2 1.4 
v [m/s] 

FIG. 6: Plot of the time difference, Δt = tH − tL, versus the average velocity of the ball, v̄. 

We then repeated the above process for the high road. The average speed for a given run 
was again calculated and compared to those of the low road. If this average speed matched 
any of those for runs on the low road (to within 0.005 m/s), then the time difference was 
calculated and the data point was recorded. Fig. 6 displays the data and the theoretical 
prediction, as calculated in section II, with the average speed used as numerical input for 
v1. 

In general, the high road/ low road demonstration serves as an excellent teaching tool of 
classical dynamics. The results of the demonstration are counterintuitive and can be used to 
engage the students who are often surprised of the outcome. A detailed theoretical analysis 
can proceed and be used to cover much of Newtonian mechanics. Finally, measurements of 
the time difference as a function of the average speed for a high road/ low road demonstration 
can easily be made in the laboratory and be used to help reinforce the concepts and theory 
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APPENDIX A: EFFECTIVE RADIUS 

To find the effective radius, Re, we need to first calculate the angle of contact, α, between 
the ball and the rails. For an illustration of these quantities and the cross section of the ball 
and rails, see Fig. 7. As can be witnessed from the figure 

2Rb cos α = w + 2Rr(1 − cos α) (A1) 

where w is the distance between the rails and Rb and Rr are the radii of the ball and rail, 
respectively. Solving for the angle and using basic trigonometry, one finds 

  
w + 2Rr 1 w + 2Rr 

2 

α = cos −1 = sin−1 
 1 −  (A2) 

2(Rb + Rr) 4 Rb + Rr 

In this study it is advantageous to find the ratio of the radius of the ball to the effective
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FIG. 7: Schematic of the cross section of the ball and the rails of the track. 

radius, thus determining a unit-less scaling factor. Again from basic trigonometry, we find 

−1/2 
Rb 1 1 w + 2Rr 

2 

= = 1 − = 1.46 (A3) 
Re sin α 4 Rb + Rr 

to three significant figures where we used the data from Table I. 
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General Search for Stars with Rapid Optical Variations: 
Test Fields 

 
E. Fagg, J. Park, K. Pearson and R. Kehoe 

Southern Methodist University 
Dallas, TX 75275 

Abstract:  
We present a search for stars exhibiting short time-scale optical light 

variations.  Our search employs archival data taken by the ROTSE1 telephoto 
array in two eight degree fields of view.  This is a test study considering two 
fields which overlap fields previously mined for variables, but with different data 
and search techniques. Each field was observed for approximately six continuous 
hours. We employ a general search strategy based on statistical properties of the 
observed light curves for each object.  The analysis is sensitive to sources with 
variations < 0.25 day and > 0.1 mag and with mean magnitudes between 9.5 mag 
and 14 mag.  We identify 42 variable stars with our search strategy.  Of these, 17 
were not found by comparison with catalogs of previously acknowledged 
variables.  Within this sample, attempts at classification yield four W UMa 
systems and two δ Scu stars.  The remaining eleven transient detections exhibit 
incomplete light curves and require further study for classification. 

I. Introduction 
Stars with varying intensities of brightness, or “magnitude”, also known as variable 

stars, have interested astronomers for hundreds of years.  Intensity is “a measure of the 
light energy from a star that hits 1 square meter in 1 second1.”, and the magnitude is the 
brightness scale that is based on a constant intensity ratio, which was defined by 
Hipparchus. The brightest star, Sirius, is magnitude -1.43 and the dimmest star visible to 
the unaided eye is approximately magnitude 6.  The intensity vs. time graph is termed a 
‘light curve’, and variable stars have varying light curves. 

Variation in stellar brightness was observed by several cultures, including the 
Chinese, who saw `guest stars’ which were sometimes actual stars that were previously 
too dim to see by eye.  In Western Europe, the first acknowledgement was with the 
sudden awareness to “new stars” (Latin ‘novae stellae’), such as Tycho’s star of 1572.  
Since then, thousands of variable stars have been discovered, and classified based on 
their peculiarities in variation.  The observation of these celestial phenomena have 
allowed astronomers, both amateur and professional, to learn more about the night sky, 
particularly objects too dim to see with the unaided eye. 

Variable stars are grouped into two major categories: intrinsic, those whose 
luminosity varies due to pulsating or other alterations in physical characteristics; and 
extrinsic, those who appear to vary in magnitude due to an eclipsing companion.   An 
eclipsing binary or a variable star can be usually distinguished by distinctive, usual 
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patterns of the intensity versus time light curve. Long period variable stars have been 
studied for many years because their apparent brightness changes can be easily observed 
using a telescope.  Their periods can last from weeks up to several years.  

Short period variation has also been studied, but such stars can require more 
frequent observations to be well-measured.  Such objects have periods that can last from 
less than an hour to a few days.  These types of variables are more commonly the subject 
of professional research today because of their high energy outputs and patterns of light 
variation.  Two examples of these types of variables are the RR Lyrae (period: 0.2 day ≤ 
T ≤ 1.0 day, normally 0.5 day) and δ Scuti stars (period: T ≤ 0.3 day, amplitude: 0.01 
magnitude ≤ Δm ≤ 0.5 magnitude), which are pulsators and have typically lower 
luminosity variations and shorter periods than other variables.  An example light curve 
for a pulsating variable is shown in Figure 1, which is discussed in more detail in Section 
IV.  Such stars do not exhibit a static equilibrium between the outward pressure from 
radiation and the inward pull of gravity.  Instead, they release energy when the zone 
expands and  absorb energy when it is compressed, exhibiting complex alternations of 
heating and cooling, expansion and contraction, and growing more luminous and less 
luminous.  

      
Figure 1: A pulsating variable light curve is shown on the left.  The rise (T1) and fall 
times (T2) are generally not equal, and the total period (ΔT) equals the sum of these 
times.    On  the  right  is  an  eclipsing  binary  light  curve.    Dimming  and  brightening 
times  are  similar,  and  the  total  period  (or  half  period)  is  longer  than  the  sum  of 
these times.   

Eclipsing binary systems containing stars relatively close or touching each other 
also exhibit short period behavior.  Some have light curves generally characterized by a 
span of brighter magnitude with one or two dips to a dimmer magnitude.  A sketch of 
such a light curve is shown in Figure 1.  Binary systems of the W UMa type contain stars 
that are so close that the surfaces are in contact and the stars share their atmospheres2.  
The second law of thermodynamics states that the entropy of an isolated system which is 
not in equilibrium will increase until equilibrium is attained. In a binary star system, heat 
transfers from the body of higher temperature to the body of lower temperature, therefore 
the heat, and thus luminosity, is transferred from the more massive star to the less 
massive one until equal temperatures are acquired.  This model of stars is best 
represented by a light curve that resembles that of a typical binary system, with the dips 
in magnitude becoming less different from each other. 
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There are many other types of variable source that exhibit rapid optical light 
variation.  Flare stars exhibit substantial changes in brightness in a few minutes before 
relaxing to quiescence.  Cataclysmic variables can have erratic light curves.  Other 
objects, not stars but active galaxies, can also exhibit rapidly varying light curves. 

Many telescopes including the Robotic Optical Transient Search Experiment3 
(ROTSE) observe sources with short time-scale variation.  The ROTSE1 telescope 
provided the data used in this paper.  We have pursued a study in an unbiased way to 
identify the catalog of variable stars with gross characteristics of variation which do not 
assume a particular kind of physical system.  We have employed a basic statistical 
analysis looking for light curves showing variation during much of a given night of 
observation. 

II. Detector and Data 
 The ROTSE telescopes were originally created to study the optical light emitted by 
gamma ray bursts (GRBs), but they are also used to study optical light from numerous 
types of sources, including variable stars. These small but powerful telescopes are 
distributed and used internationally.  We utilize a subset of data taken between 1999 and 
2000 with the ROTSE1 telescope for the purpose of looking for isolated optical bursts 
associated with GRBs4.   

The ROTSE1 telescope was an array of four Canon telephoto lenses with 8 degree 
field of view each.  These lenses were attached to Apogee AP-10 charge-coupled device 
(CCD) cameras.  A CCD is an array of cells which send an electric signal based on the 
intensity of the light striking them.  The AP-10 was designed initially for ROTSE1 and 
had a relatively high number of pixels (4 megapixels) and low electronics noise.   

The ROTSE telescopes take measurements when photons emanating from a light 
source are focused to an image on the CCD array of cells.  Typically in astronomy, filters 
are used to restrict to a standard range the wavelengths of light which can strike the CCD.  
A ‘V band’ filter restricts the signal to wavelengths in the middle of the optical spectrum, 
while an ‘R band’ filter restricts to redder wavelengths.  In order to allow the maximum 
light to strike the CCD, the ROTSE optics do not include filters.  The resulting ROTSE1-
measured magnitude corresponded approximately to a V or R band magnitude. 

The optics typically focus the signals from a point source such as a star to a region 
approximately 14 arc seconds wide.  This is the size of an AP-10 CCD cell. For the 
brightest stars, signals can spill over to many neighboring cells.  This is termed 
‘saturation’ and it creates an undesirably bright and distorted image.  As a result, it is 
difficult to obtain accurate photometry for stars brighter than 10th mag in one minute 
exposures. Also, the low level electronics noise of the CCD makes it difficult to find or 
accurately measure the brightness of dim stars. Therefore, ROTSE1 is not sensitive to 
stars below approximately 15th magnitude, since dim stars are more sensitive to the noise. 

Many exposures of sixty seconds were obtained for several consecutive hours over 
several days, using different fields in April, 2000 and July, 2000 (and other periods), as 
part of a study for lone optical bursts4.  We use the data for camera ‘b’ from the April 14 
data, and camera ‘a’ for the July 6 data as test cases for a future analysis of the entire 
untriggered sample.  These fields are termed ‘000414b’ and ‘000706a’, respectively.  
Approximately 6 consecutive hours of data were taken in each night.  The July data was 
taken by pointing at two fields alternately in blocks of several minutes.  This paper only 

tschwab
Typewritten Text
Journal of Undergraduate Research in Physics
                                        November 16, 2009



Fagg, Park, Pearson & Kehoe  Page 4   

includes camera ‘a’ data for one of these two pointings.  The images were processed 
through a chain which corrects for lens vignetting and noise effects, finds stars from the 
cell readouts in the CCD5, and provides a precision calibration of positions and 
magnitudes by comparing to the Hipparcos astrometry catalog6.  Typically, a position 
resolution of 1.5 arc seconds is achieved.  For bright sources, a magnitude uncertainty of 
0.02 magnitudes is achieved. 

 For each object, many observations can be obtained in one night.  With the use of 
programs written at the University of Michigan using the Interactive Data Language 
(IDL), these collected data of magnitude are plotted versus time, creating a light curve.   

III. Lightcurve Selection 
Typically, the fields used for this analysis yield approximately 20,000 observed 

sources per image.  The vast majority of these are non-variable objects, so a search must 
be made for varying lightcurves.  The data stored in the University of Michigan’s archive 
can be extracted through a special lightcurve search called “find_burst.”  Data is selected 
by quantifying search “cuts” input by the user based on three statistical criteria calculated 
in the ways described below.  Two of the parameters account for the level of error present 
in each measurement in the lightcurve. 

Amplitude of magnitude variation (Δm):  We calculate the difference 
between the brightest observed magnitude and the dimmest for the light 
curve: 

Δ m = mmax - mmin .      (1) 
We require Δm to be greater than some value. 

Significance of maximum variation (σmax): We calculate this as the 
difference in magnitude divided by the estimated errors on the magnitude 
measurement, added in quadrature: 

σmax = (mmax - mmin) / (εmax
2 + εmin

2) ½ .   (2) 

Here, m means the magnitudes of the light curve, and ε means estimated 
errors.  These errors are statistical errors based on the brightness of the 
star.  This parameter attempts to determine if an observed variation is 
significant by seeing if it is large compared to the errors on the 
measurements. We require σmax to be greater than some value to select 
variable stars which have large, significant variations. 

Chi-squared (χ2):  This is calculated as 

χ2 = Σ ((mi – mavg)/ σi)2        (3) 

where the sum is performed over all measurements, i, and mi and σi are the 
magnitude and estimated error for each measurement, respectively.  We 
calculate mavg to be the average magnitude for the whole light curve.  In 
calculating χ2, we exclude the single measurement furthest from mavg.  
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This rejects fake variable light curves where just one measurement is bad. 
If the star was not variable, its χ2 would be near 1.0.  We require the light 
curve to be inconsistent with constant brightness, so χ2 should be large. 

To perform a general search, we tried several combinations of cuts on the 
000414b data using the above three parameters and counted the number of objects which 
fell into four general categories.  The brightest sources exhibit light curves where most or 
all of their measurements are saturated, which results in a highly discontinuous light 
curve, which is not a sign of a variable star. We omit the candidates from our list that are 
brighter than the magnitude in which this phenomenon is no longer observed.  The 
dimmest sources are strongly affected by noise in the camera and often may not even be 
identified, resulting in a sparse and erratic light curve with poorly assessed errors on the 
measurements.  We omit stars dimmer than the brightest stars in which we begin 
observing this phenomenon.   

Two types of light curves are found among the remaining candidates.   The first 
type exhibits at least two abrupt, consecutive and opposite changes in brightness, 
producing one observation substantially different than immediately preceding and 
following measurements.  Usually there must be two such occurrences because the χ2 

requirement rejects candidates with just one isolated bad observation.  The other type 
exhibits a light curve in which most observations are continuous with their immediate 
neighbors in time.  This is not to say they have regular variation: such light curves can be 
very variable on the timescale of several minutes.  

Although it is very difficult, based on general physics principles, to have objects 
fluctuate by > 0.1 magnitude in brightness in one minute, extreme examples such as 
gamma-ray bursts have been observed.  We keep our search general, while also yielding a 
purer sample of clear variables, by taking the following approach.  We visually inspect 
the light curves and omit all observations that are discontinuous from their preceding and 
succeeding observations.   In other words, we permit an object to change by several times 
its error in 1 minute, or we allow it to dim similarly, but we do not permit it to brighten 
and return back to its original state in three consecutive observations.  Such variations 
can happen rarely due to improperly corrected or noisy pixels, but can produce a large 
number of false candidates because we are analyzing over 330 observations for 20,000 
stars in each field.  In making this requirement, we remove isolated bad observations 
while remaining sensitive to variation on the timescale of a few minutes without bias.   

The results of our scan of selections, with the number of rejected bright or dim 
candidates, and those from bad observations, are shown in Table 1.   

 
Δm σmax χ2 bright bad obs. Dim candidates 
0.5 2.0 3.0 0 84 117 2 
0.1 0.0 3.0 (‘B’) 24 63 171 15 
0.1 0.0 5.0 18 7 15 11 
0.1 5.0 1.0 (‘A’) 54 410 195 16 
1.0 2.0 5.0 18 0 0 0 
1.0 5.0 0.0 0 30 27 0 

Table 1: Cuts used  in  initial  lightcurve search  in a  test on  field 000414b. The  four 
columns  on  the  right  give  the  number  of  backgrounds  of  different  types,  and  the 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number of good candidates.  Cuts that are labeled ‘A’ and ‘B’, which have no relation 
to camera names ‘a’ and ‘b’, were chosen for variable star selections in this paper. 
 The rightmost column indicates the number of good variable candidates we 
observe.  The results support the following conclusions.  Cuts using Δm > 0.1 yielded the 
most good variable candidates: i.e. Δm = 0.1, σmax = 5.0, χ2 = 1.0 yielded sixteen variables 
out of over 670 light curves.  The use of the χ2 cut significantly reduces the background 
due to bad observations, with a value of 3.0 (selection ‘B’) showing the next largest 
number of good candidate light curves.  A selection emphasizing the χ2 parameter yields 
a lower background with a similar number of good objects.  For field 000414b, selections 
‘A’ and ‘B’ find a common set of eleven variables candidates, plus five with ‘A’ only and 
four with ‘B’ only. 

IV. List of Objects 
A total of forty-two candidates are identified in the two fields.  For the 000706a 

field, the 22 identified candidates were varying in at least one other night.  All candidates 
are listed in Table  2 and Table  3, along with their positions and measured lightcurve 
characteristics. The designations at left follow the form ‘ROTSE1 
JHHMMSS.SS±ddmmss.s’ where ‘HH’, ‘MM’ and ‘SS.SS’ give the RA position in 
hours, minutes and seconds, and the ‘dd’, ‘mm’ and ‘ss.s’ give the declination 
analogously.  The ROTSE1 magnitude, mR1, is calculated as the average of mmax and mmin.  
The time interval ΔT is calculated as the apparent time from maximum to maximum, or 
minimum to minimum, if a pair of either is apparent.  In the case of δ Scu and other 
pulsating stars, this will be the period.  For symmetric W UMa stars and other eclipsing 
binaries where both dips are deep, it will be half the period.  For longer period variables, 
the quoted value is merely a lower limit as only 6 hours of data were used.  Because of 
the length of time ROTSE1 was observing in the night, there is a natural insensitivity to 
medium or long time-scale variables.   

Also shown in Table  2 and Table  3 are the rise time and fall time of the 
lightcurve, labeled T1 and T2, respectively.  These are shown graphically in Figure 1.  T1 
is defined as the shortest time it takes to rise from the end of a period of minimum 
brightness to the beginning of a period of maximum brightness.  T2 is defined conversely.  
These parameters may not correspond to the full time to transition from minimum to 
maximum brightness for the star.  But if mmin and mmax correspond to the actual minima 
and maxima, these parameters assist in classification efforts, which will be described 
later. 

 
Source mR1 Δm ΔT (days) Τ 1(days) Τ 2(days) 
ROTSE1 J110448.11+353626.6 10.96 0.21 0.20 0.09 0.09 
ROTSE1 J113721.25+425544.6 11.49 0.36 0.21 0.10 0.09 
ROTSE1 J111345.07+423951.7 11.77 0.15 >0.25 0.16 0.15 
ROTSE1 J113334.68+425829.2 11.81 0.28 >0.25 0.11 0.19 
ROTSE1 J113536.72+384557.5 12.01 0.47 0.25 0.09 0.20 
ROTSE1 J112141.02+433653.1 11.70 0.28 0.25 0.12 0.13 
ROTSE1 J111719.74+394303.0 11.98 0.31 0.10 0.08 0.07 
ROTSE1 J112541.63+423448.8 12.11 0.35 0.18 0.08 0.09 
ROTSE1 J111305.98+402137.7 11.89 0.36 >0.25 0.12 0.17 
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ROTSE1 J112037.62+392100.3 12.15 0.12 0.07 0.03 0.04 
ROTSE1 J111615.06+355027.2 12.66 0.39 0.20 0.09 0.11 
ROTSE1 J113928.29+403632.8 12.85 0.50 0.25 0.13 0.12 
ROTSE1 J111340.03+424413.8 12.68 0.26 0.21 0.09 0.13 
ROTSE1 J111415.57+371825.6 13.02 0.10 0.05 0.02 0.02 
ROTSE1 J111105.45+381123.5 13.22 0.21 0.08 0.03 0.03 
ROTSE1 J111716.02+385716.9 13.24 0.27 0.20 0.08 0.10 
ROTSE1 J112148.80+405938.4 13.25 0.26 0.21 0.07 0.04 
ROTSE1 J112009.02+435349.0 11.52 0.17 0.25 0.14 0.12 
ROTSE1 J111734.08+410649.0 13.45 0.50 0.10 0.06 0.05 
ROTSE1 J110340.78+402617.1 13.80 0.60 0.11 0.07 0.03 

Table  2:  Candidate  variable  stars  identified  by  light  curve  selection  in  field 
000414b.  Light‐curve properties are tabulated. 

 
Source mR1 Δm ΔT (days) Τ 1(days) Τ 2(days) 
 ROTSE1 J154029.81+453200.6 13.25 0.39 0.15  0.07  0.05  
 ROTSE1 J154136.92+515926.5 13.42 0.42 0.075 0.02 0.055 
 ROTSE1 J154436.45+461922.0 12.54 0.32 0.12 0.04 0.08 
 ROTSE1 J155028.43+455751.0 12.83 0.29 0.065 0.015 0.05 
 ROTSE1 J155600.54+494757.0 13.05 0.36 >0.24 0.07 0.11 
 ROTSE1 J155705.19+500527.6 12.48 0.45 0.16 0.08 0.06 
 ROTSE1 J155809.25+485742.7 12.58 0.55 >0.24 0.12 -- 
 ROTSE1 J155825.31+492652.1 11.88 0.15 0.16 0.08 0.045 
 ROTSE1 J155853.75+463548.7 13.34 0.44 0.12 -- 0.075 
 ROTSE1 J160032.12+465526.8 11.70 0.36 >0.17 0.06 0.11 
 ROTSE1 J160048.24+511648.0 13.32 0.30 0.13 0.06 0.06 
 ROTSE1 J160121.91+482938.3 12.70 0.55 0.15 0.06 0.06 
 ROTSE1 J160434.17+504514.5 12.56 0.23 0.18 0.09 0.08 
 ROTSE1 J160602.27+501111.4 10.23 0.51 0.21 0.08 0.08 
 ROTSE1 J160653.63+513835.7 13.44 0.67 0.13 0.06 0.07 
 ROTSE1 J161033.65+514401.1 11.20 0.16 0.20 0.09 0.10 
 ROTSE1 J161134.29+471612.6 13.52 0.62 0.14 0.05 0.06 
 ROTSE1 J161321.76+515524.2 11.51 0.45 0.16 0.09 0.07 
 ROTSE1 J161506.00+445822.3 12.11 0.30 >0.17 0.06  0.08 
 ROTSE1 J161801.01+511153.0 13.83 0.65 >0.22 0.07 -- 
 ROTSE1 J162004.25+451259.4 9.62 0.07 >0.23 0.23 -- 
 ROTSE1 J162410.37+455527.0 10.29 0.42 0.13 0.06 0.06 

Table 3: Candidate variable stars identified by lightcurve selection in field 000706a.  
Lightcurve properties are tabulated.   

 
 
Source Nearest Object Δr (arcsec) Object type 
ROTSE1 J110448.11+353626.6 HH UMa 0.51 Contact binary6  
ROTSE1 J113721.25+425544.6 [GGM 2006] 4974567 4.86 Contact binary7   
ROTSE1 J111345.07+423951.7 TYC 3012-1895-1 0.43 Star 
ROTSE1 J113334.68+425829.2 MT UMa 0.30 W UMa8  
ROTSE1 J113536.72+384557.5 MU UMa 0.55 RR Lyr8 
ROTSE1 J112141.02+433653.1 MQ UMa 0.87 W UMa8 
ROTSE1 J111719.74+394303.0 FIRST J111722.9+394253 38.28 Radio9 
ROTSE1 J112541.63+423448.8 BS UMa 0.80 Algol10 
ROTSE1 J111305.98+402137.7 MO UMa 0.38 RR Lyr8 
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ROTSE1 J112037.62+392100.3 MP UMa 0.15 Pulsating4 
ROTSE1 J111615.06+355027.2 [GGM 2006] 7575961 0.13 contact binary7 
ROTSE1 J113928.29+403632.8 FIRST J113922.2+403640 68.63 Radio11 
ROTSE1 J111340.03+424413.8 --- --- --- 
ROTSE1 J111415.57+371825.6 --- --- --- 
ROTSE1 J111105.45+381123.5 SDSS J111055.84+381055.1 116.74 Quasar12 
ROTSE1 J111716.02+385716.9 --- --- --- 
ROTSE1 J112148.80+405938.4 FIRST J112148.9+405909 29.15 Radio11 
ROTSE1 J112009.02+435349.0 GB6 B1117+4411 99.11 Radio13 
ROTSE1 J111734.08+410649.0 FIRST J111740.0+410628 69.94 Radio11 
ROTSE1 J110340.78+402617.1 --- --- ---  

Table 4: Nearest matches in SIMBAD database to observed candidate variables from 
the 000414b field.  Notes on object classification are given in the rightmost column. 

 
Source Nearest Object Δr (arcsec) Object type 
 ROTSE1 J154029.81+453200.6 --- --- --- 
 ROTSE1 J154136.92+515926.5 --- --- --- 
 ROTSE1 J154436.45+461922.0 TYC 3483-746-1 1.58 δ Scu14 
 ROTSE1 J155028.43+455751.0 TYC 3490-814-1 0.87 δ Scu14 
 ROTSE1 J155600.54+494757.0 BPS BS 16029-0008 3.92 Star15 
 ROTSE1 J155705.19+500527.6 [GGM2006] 5207106 1.29 contact binary7 
 ROTSE1 J155809.25+485742.7 --- --- --- 
 ROTSE1 J155825.31+492652.1 V* V1023 Her 1.10 W UMa 
 ROTSE1 J155853.75+463548.7 --- --- --- 
 ROTSE1 J160032.12+465526.8 V* AR Her 1.57 RR Lyr 
 ROTSE1 J160048.24+511648.0 GSC 03497-01775 2.67 W UMa16 
 ROTSE1 J160121.91+482938.3 [GGM2006] 5208621 0.78 contact binary7 
 ROTSE1 J160434.17+504514.5 GSC 03497-00900 6.64 W UMa16 
 ROTSE1 J160602.27+501111.4 V* V842 Her 1.78 W UMa 
 ROTSE1 J160653.63+513835.7 --- --- --- 
 ROTSE1 J161033.65+514401.1 TYC 3497-1342-1 0.44 Star17 
 ROTSE1 J161134.29+471612.6 GSC 03491-00010 0.91 W UMa16 
 ROTSE1 J161321.76+515524.2 [GGM2006] 5214166 2.94 contact binary7 
 ROTSE1 J161506.00+445822.3 --- --- --- 
 ROTSE1 J161801.01+511153.0 GSC 03498-01093 1.10 RR Lyr16 
 ROTSE1 J162004.25+451259.4 V* V893 Her 1.91 RR Lyr 
 ROTSE1 J162410.37+455527.0 TYC 3492-1272-1 0.73 Star18 
Table 5: Nearest matches in SIMBAD database to observed candidate variables for 
the 000706a field.  Notes on variable classification are in the rightmost column. 

Catalog Matching 

We have compared these lists to existing objects catalogued in the SIMBAD19 
astronomical database according to their right ascension and declination.  Close matches 
to known or suspected variable stars in the catalog were found for twenty-two candidates.  
We further check the AAVSO site20 for remaining objects and find three more matches. 
All 25 matched candidates proved to be either pulsating variables or eclipsing binaries.  
Most of these were identified using ROTSE1 data in previous publications.  Of the 25 
matched candidates, twelve are recent, unconfirmed identifications.  We present these 
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lightcurves in this section.  From the previously acknowledged twenty-five, we have 
seventeen other candidates that are newly identified transients.  We discuss these 
seventeen cases in the next section. 

Recently Identified Eclipsing Binaries 

     

     

 
Figure  2:  Eight single-night light curves for previously suspected contact binaries.  
Plotted errors are statistical + systematic.  The x-axis represents the time of observation in 
days, while the y-axis represents the magnitude of an observation. 

From our original 25 previously identified candidates, there are sixteen candidates 
matching previously identified or suspected eclipsing systems.  Eight of the sixteen 
candidates are not listed as definite classifications in the SIMBAD catalog, although there 
are claims these are W UMa systems6,7. The light curves for the eight suggested variables 
are shown in Figure 2.  We measure T1 to be similar to T2 and ΔT to be a little larger than 
T1+T2 for these objects, which suggest W UMa classification.  These light curve data 
therefore support the existing claims. 
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Recently Identified Pulsating Variables 
 The remaining nine of twenty-five previously identified candidates are identified 

as pulsating variables.  Four of them are not clearly categorized in SIMBAD.  Their 
lightcurves are shown in Figure  3. One of the four candidates (ROTSE1 
J112037.63+392100.3) is listed as a variable of general ‘pulsating’ classification in the 
SIMBAD catalog.  This is based on a preliminary identification of this as a δ Scu star4.  
Three and a half more periods are evident in the lightcurve in Figure 3.  At least two 
periods are evident for two of the other candidates.  Considering that T1 ≠ T2 and 
ΔT=T1+T2, these data support the claims of these being of δ Scu type.  The last of the 
four stars is an RR Lyr star for which we observe a partial lightcurve  consistent with this 
classification. 

    

 
Figure  3:    Four  single‐night  light  curves  for  previously  suspected  pulsating 
variables.  Plotted errors are statistical + systematic.  The x-axis represents the time of 
observation in days, while the y-axis represents the magnitude of an observation. 

V. Analysis of Unmatched Sources 
Our seventeen remaining candidates are previously uncatalogued as variable 

sources.  We divide these variables into four categories: eclipsing candidates, pulsating 
candidates, incomplete smooth lightcurves, and irregular variables.  This is based upon 
the lightcurve characteristics in Table 2 and Table 3.  In order to assist identification of 
the candidates, it is useful to examine multiband photometry of these objects.  In order to 
do this, we consulted the IPAC21 online catalog to extract infrared or optical band 
magnitudes. For field 000414b, one of the candidates matching a radio source, ROTSE1 
J112148.80+405938.4, has been suggested to be a variable of potentially pulsating type4.  
The lightcurve presented here does not support the pulsating classification, but it does 
confirm the variable nature of the source.   

Previously Uncatalogued Eclipsing Candidates 
Eclipsing candidates are identified by exhibiting clear minima and maxima which 
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allow a full set of light curve parameters to be calculated in Table 2 and Table 3.  We 
select those variables where T1 and T2 are similar in magnitude, and where ΔT > T1+T2. 
Their light curves are shown in Figure 4. 

     

  
Figure 4:  Single‐night light curves for eclipsing binary candidates without a known 
variable match.  Plotted errors are statistical + systematic.   The x-axis represents the 
time of observation in days, while the y-axis represents the magnitude of an observation. 

The estimated periods and infrared band magnitudes for these candidates are 
given in Table  6.  The infrared band magnitudes J, H and K cover ranges of 
progressively longer wavelengths, with J being near-infrared and K being far-infrared 
wavelengths.  All four objects satisfy the selections used in Ref. 7 to identify W UMa 
stars: 0.26 < T < 0.6, mR1-J ≤ 3.0, H-K ≤ 0.35, and 0.71-1.45T < J-H < 0.96-1.45T.  The 
amplitudes of variation for these stars tend to be lower than was typical in that search. 

 
Source T (days) J H K mR1-J H-K J-H 

ROTSE1 J111345.07+423951.7 0.55 10.925 10.735 10.660 0.84 0.08 0.19 
ROTSE1 J113928.29+403632.8 0.50 11.940 11.697 11.625 0.91 0.07 0.24 
ROTSE1 J111340.03+424413.8 0.42 11.422 11.165 11.103 1.26 0.07 0.25 
ROTSE1 J112009.02+435349.0 0.5 10.427 10.234 10.147 1.09 0.08 0.20 

Table  6:  Period,  infrared  band  magnitudes  and  colors  for  four  new  W  UMa 
candidates.  J through K bands are from 2MASS22. 

Previously Uncatalogued Pulsating Candidates 
The pulsating candidates are identified by exhibiting minima and maxima.  These 

candidates satisfy T1 ≠ T2 and ΔT approximately equal to T1+T2.  Their lightcurves are 
shown in Figure  5.  ROTSE1 J111415.57+371825.6 is not a clear variable detection.  
The second half of the lightcurve is very erratic, suggesting an instrumental problem, 
while the earlier 3 hours may indicate a δ Scu with ~0.1 mag amplitude and 0.05 day 
period at the edge of sensitivity.  A firm identification will require examining more data. 
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Figure 5:   Single‐night  light curves  for objects without a match but which may be 
pulsating variables.   Plotted errors are statistical + systematic. The x-axis represents 
the time of observation in days, while the y-axis represents the magnitude of an 
observation. 

Color information for ROTSE1 J154136.92+515926.5 and ROTSE1 
J111415.57+371825.6 is given in Table 7.  Pulsators of δ Scu type are expected to reside 
in spectral categories A0-F5, which corresponds roughly to -0.1 < B-V < 1.0.  We do not 
have B and V magnitudes for these two objects, but obtain B and R by averaging the two 
measurements from the USNO-B1 catalog.  If we assume that B>V and V>R, then B-R is 
an upper limit on B-V.  These quantities are consistent with both stars being δ Scu stars. 

 
Source T (days) B R B-R 

ROTSE1 J111415.57+371825.6 0.05  13.68 13.00 0.68 
ROTSE1 J154136.92+515926.5 0.08  13.39 12.67 0.72 

Table 7: Period, optical band magnitudes and color for two δ Scu candidates.  B and 
R band magnitudes are from USNO‐B1. 

Previously Uncatalogued Stars with Continuous, Incomplete Variations 

   

    
Figure  6:    Single‐night  light  curves  for  objects  without  a  transient  match.  
Lightcurves appear  to be  incomplete  segments  from regular variables.   Errors are 
statistical + systematic. The x-axis represents the time of observation in days, while the 
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y-axis represents the magnitude of an observation. 

Four variables with incomplete smooth lightcurves are shown in Figure 6.  These 
lightcurves are missing some information needed for a preliminary classification.  In all 
cases, we cannot properly estimate T2 or ΔT, and either the maxima or minima are 
missing.  Although they appear clearly distinct from the irregular variable category, use 
of further data will be needed to establish these identifications. 

Previously Uncatalogued Irregular Variable Candidates: 
Seven of the candidates appear to fall into an irregular variable category.  These 

lightcurves are shown in Figure 7.  We will present further results on these objects in a 
future study. 

  

 
Figure  7:    Single‐night  light  curves  for  objects  without  a  variable  match  and 
exhibiting irregular variations.  Plotted errors are statistical + systematic. The x-axis 
represents the time of observation in days, while the y-axis represents the magnitude of 
an observation. 
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VI. Results 
We have performed a search for optically variable sources in two fields with one 

night each of ROTSE1 data and identified 42 variable candidates.  Of these, 10% were 
previously discovered with non-ROTSE1 data, and 17 were not previously catalogued as 
variables.  We provide light curves to support classification for twelve W UMa, δ Scu 
and RR Lyr variables whose identification may not be settled.  We identify four 
previously unidentified W UMa contact binaries and two δ Scu stars.  We also identify 11 
candidates that are clearly variable but require more data to ascertain their physical 
characteristics. 
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Department of Physics at SMU, as well as matching funds from the SMU Undergraduate 
Research Associate Program.  We thank the ROTSE Collaboration and the U. of 
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suggestions and access to the Michigan data and software archive for ROTSE1.  This 
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corresponds to an unstable equilibrium point and will be referred to as the critical 

angle throughout the rest of this manuscript. 

Tipping a kayak on its side may seem trivial, but the physics that dictates 

the dynamics is rather sophisticated.  In fact, it is first necessary to simplify the 

problem with several assumptions in order to arrive at a manageable physical 

model.  Here, we will treat the kayak and kayaker as a rigid body.  We further 

simplify the model by analyzing the two-dimensional cross-section of the kayak 

and approximate the cross-section of the kayak to be that of an ellipse.  This 

assumption is justifiable in that, although kayaks come in many different shapes, 

most of these shapes are slight variations of an elliptical cross-section.  Treating 

the kayak as having an elliptical cross-section additionally allows for an easy 

consistency check of our equations.  By setting the semi-major and minor axes to 

be of equal length, we can easily compare our equations of motion to that of an 

object of circular cross-section. 

We begin by deriving the equations of a kayak in mechanical equilibrium 

by setting the net force and net torque acting on the kayak equal to zero.  This 

yields a set of algebraic equations describing the critical angle in terms of the 

parameters of the system and the height of the water level relative to the center of 

the kayak.  We then numerically solve for the critical angle for several values of 

the center of mass of the kayak-kayaker system and plot these results.  The 

tschwab
Typewritten Text
Journal of Undergraduate Research in Physics
                                               August 31, 2009



 

resulting plot reveals the dependence of the critical angle on the location of the 

center of mass of the system. 

 

The Physics of Kayaks 

It is instructive to first consider an upright kayak in water in the absence of 

rotation.  Essentially, the hull of the kayak is sitting with the semi-major axis 

parallel to the surface of the water.  Figure 1 depicts this scenario. 

In equilibrium, when the boat undergoes zero acceleration, the net force 

acting on the kayak is zero.  The forces acting on the kayak are the force due to 

gravity, Fg , and the force due to buoyancy, FB .  From basic physics, the buoyant 

force is equal to the weight of the water displaced, or equivalently, the product of 

the density of water, the volume of water displaced, and the constant gravitational 

field.  We set the buoyant force equal to the force due to gravity yielding 

€ 

mg = ρVg  

where m is the mass of the kayak/kayaker system and V is the volume of the fluid 

displaced.  To further simplify the problem, we demand that the cross-sectional 

area of the kayak is uniform throughout the length of the boat.  Using this 

assumption, the volume of the water displaced by the kayak can be related to the 

cross-sectional area of the water displaced and the length of the kayak, l, and is 

given by 

€ 

V = Al (2) 

(1) 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Inserting (2) into (1) and solving for the cross-sectional area of the water 

displaced, we obtain  

€ 

A =
m
ρl

 

Notice that the area of water displaced is a constant for the kayak and is 

independent of the angle of orientation.  This constant area is determined by the 

mass of the kayak-kayaker system, the density of water, and the kayak’s length. 

Next, we rotate the kayak about an angle, θ, in the clockwise direction 

with respect to the initial coordinate system.  Figure 2 shows this rotation.  By 

considering the rotation of the system about the kayak’s center of mass, the 

location of the center of mass of the displaced water becomes a dynamical 

quantity.  When the center of mass of the kayak-kayaker system and the center of 

buoyancy3 share the same x-coordinate, the net torque acting on the kayak is zero 

and the kayak is in an unstable equilibrium position.   This scenario illustrates a 

second equilibrium position (in addition to the upright stable equilibrium position 

illustrated in Figure 1) when the kayak is tipped at this specific critical angle.  

When the centers of mass do not share the same x-coordinate, there exists a net 

torque acting on the system as shown in Figure 3.  This causes the kayak to either 

right itself or to tip over. 

 (3) 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 In order to find this critical angle, we consider a rotation of the kayak 

about the center of elliptical cross-section.  This is accomplished by using a 

rotation matrix1. 

 

When the multiplication is carried out, the end result relates the two coordinate 

systems. 

 

To find the equation describing the rotated ellipse, we place these transformations 

into the equation of the ellipse 

 

where a and b are the semi-major and minor axes, respectively.  Solving for the 

dependent variable, we obtain the expression  

€ 

y±(x) =α −β x ±
ab
α
− x 2

 

 
 

 

 
  

where and are functions of θ  and are defined as: 

€ 

α ≡
ab

a2 − sin2θ a2 − b2( )

β ≡
sinθ cosθ a2 − b2( )

ab

 

(4) 

(5) 

(6) 

(9) 

(10) 

(8) 

(7) 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Notice that the two solutions expressed in (8) arise from the fact that the ellipse is 

a multi-valued function.  y+(x) , y-(x) describes the upper, lower section of the 

rotated ellipse, respectively. 

 Now that an equation describing the ellipse in terms of its rotated 

orientation has been found, we proceed in finding an equation describing the 

center of buoyancy.  The center of mass of a system bounded by two functions in 

the xy plane is 2 

€ 

X w =
1
A

x  f x( ) − g x( )[ ]
XL

XR

∫                  dx  

where is the area of the displaced water and  and are the x-coordinates 

corresponding to where the two functions f(x) and g(x) share the same value.  If 

we allow the surface of the water to be a distance h below the x-axis, then   

f(x) = -h, where h is a positive number. The function g(x) is set equal to y-(x), 

which describes the lower section of the ellipse.  In order to calculate the integral 

in (11) explicitly we need to first find the values of and .  Figure 4 depicts 

each of these quantities. 

 To find the endpoints of the integral, XL and XR, we set –h = y-(x) and 

solve for x.  After much simplification, the result is of the form 

€ 

XR ,L =
1

α 1+ β( )
β h ± abα 1+ β 2( ) − h2[ ]. 

(11) 

(12) 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Now that the endpoints have been calculated in terms of h and θ, the integral 

defining the center of mass of the displaced water, (11), can be calculated.  The 

result in terms of the endpoints, and , is as follows 

 

Before our expression for is complete we must determine h.  Notice 

that although the area of the displaced water is a constant, the water level, h, is 

dependent on the orientation of the ellipse.  The process of arriving at an 

expression for h(θ) involves calculating the displaced water’s area as an integral 

of the area between two curves.  More specifically, the area of the displaced water 

can be calculated in two ways.  The first is as we described above by setting 

.  This method gives us the area of the displaced water.  The second 

method involves computing the integral of the water surface line minus the 

integral of the elliptical curve (see Figure 4).  We can then set these two areas 

equal to one another and solve for h.

 The limits of integration are again the x-coordinates where the two curves 

cross, and .  The integral determining the area is  

€ 

A = f (x) − g x( )[ ]
XL

XR

∫               dx  

(13) 

(14) 

tschwab
Typewritten Text
Journal of Undergraduate Research in Physics
                                               August 31, 2009



 

where again f(x) = -h, and the function g(x ) is set equal to y-(x).  This integral 

yields the result 

 

This relation is important, as already mentioned, in that it relates h to the constant 

area of the water displaced and is a function of the angle θ.  Notice that it is a 

transcendental equation and cannot be solved analytically for h as h is contained 

in XR and XL. 

 In order for the net torque acting on the system to be zero, and thus, the 

kayak to be in a state of rotational equilibrium, we must set the torque due to the 

displaced water acting at to be equal to the torque due to the kayak/kayaker 

system.  The force due to the weight of the kayak/kayaker system acts at the 

center of mass of the system and has an x-coordinate given by 

€ 

X K = Lsinθ  

where L is the distance of the center of mass of the kayak/kayaker system 

measured from the center of the elliptical cross-section.  From basic physics, L is 

given by2 

€ 

L =
mperson

mkayak + mperson

 

 
  

 

 
  R  

(15) 

(16) 

(17) 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where R is the center of mass of the kayaker relative to the center of the ellipse.  

Now, setting , the resulting equation determining mechanical 

equilibrium is  

€ 

Lsinθ =
1
A
αβ
3

XR
3 − XL

3( ) − h2 XR
2 − XL

2( ) − α3
ab
α
− XR

2 

 
 

 

 
 

3
2
−
ab
α
− XL

2 

 
 

 

 
 

3
2

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 
 

 

Solving the System of Equations 

 We have a set of coupled algebraic equations, (15) and (18), that 

determine the two variables, h and θ.   To solve the equations numerically, we 

approximated all of the system’s parameters by analyzing a kayak (a = .38 m, b = 

.15 cm, m = 100 kg) and rearranged equations (15) and (18) into the form 

€ 

0 =
1
A
αβ
3

XR
3 − XL

3( ) − h2 XR
2 − XL

2( ) − α3
ab
α
− XR

2 

 
 

 

 
 

3
2
−
ab
α
− XL

2 

 
 

 

 
 

3
2

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 
− Lsinθ  

€ 

0 =
αβ
2

XR
2 − XL

2( ) − h XR − XL( ) +
α
2
XR

ab
α
− XR

2 − XL
ab
α
− XL

2
 

 
 

 

 
 

+
ab
2
sin−1 XR

α
ab

 

 
 

 

 
 − sin−1 XL

α
ab

 

 
 

 

 
 

 

 
 
 

 

 
 
 
− A.

 

where α and β are defined in (9) and (10) and XL and XR are given by (12).  We 

then input the right-hand side of (19) and (20) into a Microsoft Excel spreadsheet 

and identified the angles where each input changes sign.  The water level, h, was 

then manipulated manually until (19) and (20) were both satisfied for the same 

(18) 

(20) 

(19) 

tschwab
Typewritten Text
Journal of Undergraduate Research in Physics
                                               August 31, 2009



 

value of θ, hence yielding the numerical solution of the above equations for a 

given choice of parameters.  We then allowed the numerical value for the center 

of mass of the kayak/kayaker system to vary and repeated the above procedure.  

Figure 5 shows a Microsoft Excel screenshot of this numerical analysis. 

 We found a range of numerical values for the critical angle, θc, for several 

values of L and plotted θc vs. L to display these numerical data points.  Intuitively, 

as the center of mass of the kayak/kayaker system, L, increases, the critical angle, 

θc, should decrease.  The plot displaying the numerical data generated shows 

exactly this with the functional form demonstrated numerically (see Figure 6). 

 

Conclusion 

 Realistic modeling of even seemingly simple dynamical systems can 

become increasingly complicated.  In many cases, finding an analytical solution 

of the motion is not feasible without making several assumptions and 

approximations.  Finding the critical angle, θc, where the kayak is in a state of 

unstable equilibrium is an example of such a problem.  Finding an analytical 

solution to this problem is not possible as our system involves a transcendental 

equation.  However, we did succeed in finding values for the critical angle in 

terms of the center of mass of the kayak-kayaker system via a numerical method. 
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Figure 1.  Elliptical cross-section of a kayak 
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Figure 2.  Kayak rotated about an angle 
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Figure 3.  Depiction demonstrating a net torque on a   
                  kayak for different angular orientations 
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Figure 4.  Diagram depicting various aspects of the  
       water displaced by the kayak 
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Figure 5.  Screenshot of numerical method for solving 
   the system of equations 
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Figure 6.  Plot of the critical angle, θc , versus the center of  
                 mass of the kayak/kayaker system.  
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ABSTRACT

A variety of evidence points to the existence of dark matter in the universe.

As it is not directly observable with conventional astronomical techniques, we

must rely on computer models to guide our understanding. We have created a

suite of such models in order to observe and explain a specific behavior com-

mon to models of dark matter systems called the radial orbit instability (ROI).

This instability changes self-gravitating systems from spherical to non-spherical

shapes, with corresponding alterations to density and velocity distributions. The

initial conditions of our models span a parameter space that is relevant to the

radial orbit instability; we control the initial dynamical temperature, density pro-

file, and velocity anisotropy in our models. We have found that in dynamically

hot and warm systems, the radial orbit instability will be triggered if the initial

velocity anisotropy is high enough. The exact amount of anisotropy required

varies somewhat for different initial density profiles. Dynamically cold systems

behave somewhat differently, but in general, less initial anisotropy is required to

initiate the ROI as compared to hot and warm systems.

1. Introduction

Astronomy and astrophysics are, in some sense, more closely related to archaeology than

physics. Like an archaeologist relying on the remnants of eras past, astrophysicists rarely

have the luxury of making direct measurements of their subjects and often depend upon

inference and indirect means of supporting hypotheses. This is certainly true for those of us

who are interested in galaxies. Galaxies are vast collections of stars, gas, and dust of which

the NASA Great Observatory space telescopes (Hubble, Chandra, Spitzer, and Compton)

continue to provide breathtaking images.
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Astrophysicists continue to search for a fundamental picture of how galaxies form and

evolve. Since an analogous system of understanding is already largely in place for stars,

one might expect that since galaxies are mainly composed of stars, this task would be

straightforward. What makes studying galaxies interesting is that the stars are not the most

important component of galaxies, at least from the viewpoint of gravity. An analogy to

icebergs is often used to clarify our current understanding of galaxies. Stars, gas, and dust

(collectively referred to as visible matter since they can produce or absorb light) are the ice

that lies above the surface of the ocean. However, given the structure and behavior of this

visible ice, we can infer that below the surface is a large, unseen mass. In a galactic context,

this mass has become known as dark matter since it does not interact with light in any way.

Dark matter neither emits, absorbs, nor reflects light. Given that astronomers mainly use

light to detect and study objects in the universe, one is certainly justified in asking, “How

can we know there is any dark matter at all?”.

The motions of stars and gas in spiral galaxies indicate that individual galaxies are

enveloped in dark matter “halos” with roughly 10 to 100 times the total mass of the galaxy’s

stars (for example, see Salpeter 1978; Rubin 1979; Sancisi & Allen 1979). Additionally,

models of the gravitational lensing of light from distant quasars by individual galaxies require

similarly large amounts of dark matter to match observations (Schechter & Wambsganss

2004; Ferreras et al. 2005). On a very different scale, the motions of individual galaxies

within galaxy clusters, which contain hundreds to thousands of galaxies, are also difficult

to explain without including large amounts of dark matter throughout the clusters (Zwicky

1937). Recently, detailed observations of the cosmic microwave background (CMB) have

been analyzed (Spergel et al. 2007). The model of the universe that best explains the

distribution of CMB light requires that the bulk of the mass in the universe is not baryonic,

or “normal”, matter. Specifically, this model universe is composed of matter (≈ 25% of the

total mass-energy budget) and dark energy (the remaining 75% of the budget). While dark

energy is a fascinating topic, we will not discuss it further here. Rather, we will focus on the

dark matter component, which comprises about 80-90% of the total mass in the universe.

In an effort to understand how dark matter behaves and shapes the formation of galaxies

in the universe, astrophysicists have turned to computer models that evolve large numbers

of massive particles under the influence of gravity alone. Such models are referred to as N -

body models, where N is typically much larger than 10. The large number of particles makes

the models approximately collisionless. That is, the motions of the particles are determined

by the global distribution of matter in the system, not individual encounters with near-by

neighbor particles. Simulations of N -body systems are tools for analyzing the physics behind

self-gravitating, collisionless systems of massive particles. We are particularly interested in

the physics of models that undergo a collapse phase during their evolution and how collapse

shapes a models’ long-term behavior.

We have created sets of N -body simulations to investigate a process that is thought to
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be important to the formation of dark matter halos, the radial orbit instability (ROI). We

provide a brief summary of previous works that deal with the ROI (Polyachenko & Shukhman

1981; van Albada 1982; Merritt & Aguilar 1985; Palmer & Papaloizou 1987; Huss, Jain, &

Steinmetz 1999). The ROI is most evident when the particles in an initially spherical system

have a high degree of radial motion. Any slight bar-like concentration of particles leads

to torques that pull neighboring particles into the bar, increasing the torque strength and

perpetuating the instability. The ROI drives such a system towards a prolate spheroidal or

triaxial shape. This rearrangement of mass can greatly influence the density distribution

and evolution of the halo. Our specific goal is to determine and describe the factors that

instigate and drive the ROI. To this end, we focus on models with varying degrees of initial

velocity anisotropy; large amounts of radial velocity anisotropy should lead to the ROI, while

isotropic velocity distributions should not.

In Section 2, we detail the various initial conditions that influence our simulations and

the methods used to evolve our models. Section 3 contains our results as they pertain to the

global factors influencing the onset of the ROI. We summarize our work and conclusions in

§ 4.

2. Methods & Testing

2.1. Initial Conditions

The initial conditions for our models are the control parameters for our investigation.

Density profiles, velocity distributions, system mass, and system size are all determined

before any simulation begins. Our choices for each are designed to span a wide range of the

parameter space relevant to the ROI. Each model discussed here is made up of N = 104

particles, has a total mass M = 1 (in dimensionless code units), and an outer spherical edge

with radius R = 1 (again, in code units).

We have chosen three initial density distributions to investigate. Models are given

uniform (ρ = ρ0), cuspy (ρ ∝ r−1), or Gaussian (ρ ∝ e−r2

) radial density profiles. Particle

positions are chosen randomly inside the spherical system so that the appropriate distribution

is achieved using a Metropolis-like approach. With the particle positions set, the potential

energy W of the model is determined.

To complete the initial conditions, we set the velocity of each particle. We do this in

two steps; (1) set a scale speed for the system that will determine each particle’s speed and

(2) choose directions for each vector. The virial theorem is used to relate the total kinetic

energy T of a system to its total potential energy |W |. Specifically, any gravitationally bound

system in virial equilibrium has T = |W |/2. For each model, we choose an initial virial ratio
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value Q0, defined by

Q0 =
2T

|W |
. (1)

In this notation, the model is in virial equilibrium when Q0 = 1. We note that throughout

this work, any variable with a subscript ‘0’ denotes an initial value. For a given Q0 and W ,

the value of T is set. The speed of each particle is chosen so that the average speed for the

entire model is vscale, where T ≡ 1

2
Mv2

scale. We evolve models with Q0 = 1.0, 0.5, 0.2, and 0.1

to gauge the impact of this quantity on the ROI. Since models with larger values of Q0 have

more kinetic energy, they are often referred to as dynamically hot, keeping with the kinetic

theory definition of temperature. We will refer to models with Q0 = 1.0 as “hot”, Q0 = 0.5

and 0.2 as “warm”, and Q0 = 0.1 as “cold”. Changing Q0 is a simple way to control the

strength of the collapse that will occur during a model’s evolution. Cold models should have

the strongest collapses as the effect of the system’s gravity will be to immediately pull all

particles towards the center. Conversely, the particles in hot models feel a gravitational pull

towards the center, but their substantial initial momenta generally delay and weaken the

collapse (for Q0 > 1.0 at least some particles are unbound).

Choosing the directions of each particle’s velocity vector requires some care so that we

can accurately control the velocity anistropy in a model. The velocity anisotropy β for a set

of particles is defined by,

β ≡ 1 −
σ2

tan

2σ2
r

, (2)

where σtan and σr are, respectively, the tangential and radial velocity dispersions for that

set of particles. The tangential dispersion has two components, one for polar velocities and

one for azimuthal velocities; σ2
tan = σ2

θ + σ2
φ. Note that the dispersion here is referring to

the quantity σ2 = 〈v2〉 − 〈v〉2, where the angle brackets indicate averages. The velocity

dispersion is most easily thought of as a measure of the spread of the velocities around their

mean for a set of particles (in our work, particles within concentric spherical shells). β

may have a constant value throughout an entire system, or it may be a function of position

within a system. We will briefly discuss a few examples of constant β before continuing on

to anisotropy distributions.

In a model where the velocity distribution is isotropic, β = 0 throughout the system,

and a particle’s velocity vector points in a randomly chosen direction. Another way of

thinking about isotropic velocities is that σ2
r = σ2

θ = σ2
φ; the amount of random motion in

every direction is the same. This situation also points to the reason for the factor of 2 in

the denominator of Equation 2 : β = 0 when σ2
tan = 2σ2

r , as in this case. A model with

a completely radially anisotropic velocity distribution, β = 1 everywhere in the model, is

constrained to have velocity vectors that are directed towards or away from the center of the

system.

We use a flexible anisotropy profile β(r) (Barnes et al. 2007) to control the amount of

radial velocity anisotropy in our models. Depending on their radial distance, some particles
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will be set on orbits that are more radially-oriented than others. This flexible β(r) is given

by

β(r) =
1

2
(βhigh − βlow)[1 + tanh (m log r/ra)] + βlow, (3)

where βlow is the anisotropy value at the center of the system r = 0, βhigh is the anisotropy

value at the edge of the system r = R = 1, m controls the transition between these values,

and ra is the anisotropy radius at which β = 0.5. For the models presented here, βlow = 0

and βhigh = 1. We use a slope m = 7 to give a relatively localized transition between the

low and high β values; smaller m would force the transition to occur over a wider range of

r, while larger m would make the transition more step-like. Defining β as a function of r

gives us the ability to control the quantity and location of the mass that is initially isotropic

or radially anisotropic. In general, the central regions of our models have isotropic velocity

distributions with a transition to radially anisotropic distributions near the edges. We use

ra as the main control over the anisotropy of a model; small values of ra drive more particles

to be on radially anisotropic orbits, while larger values force the system to be more isotropic

(in terms of velocity). Our models include systems with ra = 0.1 to 1.2 in steps of 0.1.

The general method for assigning velocity vectors to fit a given β profile is as follows.

For a given particle, a β value is calculated from Equation 3. This value is transformed into

an “opening angle” for the velocity vector. Imagine two cones with apexes at the particle

and symmetry axes along the radial direction; one cone opens outward and one cone opens

towards the center of the halo. When β = 0, the angle will be π and the velocity vector will

be randomly assigned a direction within 4π steradians; this will give an isotropic system.

When β = 1, the angle will be zero and the velocity vector will be completely radial. For

values of β between zero and one, the opening angle varies linearly between these extremes.

At this point, we have specified the positions and velocities of each of our N particles.

Note that the important control parameters are the density profile ρ(r), the initial virial

ratio Q0, and the anisotropy radius ra. We now briefly discuss how the particles are evolved

in time and analyzed.

2.2. Evolution & Analysis

Models are evolved using the direct N -body integration code NBODY2; for further

details on NBODY2 algorithms, see Aarseth (2001). In the code, the gravitational force

between any two particles i and j is given by,

~Fij = −G
mimj

(r2
ij + ǫ2)3/2

(~ri − ~rj) (4)

where G = 1 in code units, mi and mj are the masses of the particles, ǫ is the “softening”

length, and rij is the distance between particles. Note that just as G is dimensionless in

code units, so are distances like ǫ and rij. Basically, these dimensionless distances represent
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measurements with respect to the initial radius of the system. It can be seen in Equation

4 that without the inclusion of the softening term ǫ, the gravitational force between two

particles approaches infinity as the distance r between the two particles approaches zero. This

would, in effect, represent a collisional system which deviates from the seemingly collisionless

nature of dark matter. By including the softening value, we set a maximum gravitational

force between any two particles and do not allow it to go to infinity. The particles are

then essentially collisionless and yet we must take care that the softening is small enough

to retain the force’s Newtonian character overall. We have tested the collisional nature of

our simulations by varying the values for ǫ from ǫ = 5 × 10−4 to ǫ = 5 × 10−2, similar

to the range suggested by Power et al. (2003). Differences between evolutions having ǫ

within this range are minimal. The models presented here use the smallest softening value,

ǫ = 5 × 10−4. As a further test of the collisionality of our models, we have also evolved

models with particles of different masses. If collisions play a significant role in the evolution,

particles with larger masses should “sink” to the center of the system, as collisions with

lighter particles should rob them of kinetic energy. We find no evidence of mass segregation

in any of these tests, assuring us that our models avoid undesirable two-body collision effects

and accurately simulate Newtonian gravity. Evolutions of models with different numbers of

particles (N = 5 × 103 and N = 104) have also been conducted. Again, the differences

between the various models are minimal, but we have opted to use N = 104 for increased

resolution. Our choices of ǫ and N allow us to perform the large number of simulations

necessary to investigate our rather large parameter space while adhering to the collisionless

condition required.

The initial density profile determines the crossing time, tcross, which is used as the time

interval for NBODY2. Most systems evolve for about 20 tcross; all systems come to virial

equilibrium during their evolutions and most reach mechanical equilibrium as well. Depend-

ing on the nature of the collapse, some halos that reach virial equilibrium have approximately

5% of their total mass that continues to expand throughout the evolution. During an evolu-

tion, NBODY2 regularly produces data that is collected as a “snapshot”. These snapshots

are measurements of particle numbers, positions, velocities, energies, collision data and more.

These time-sequence measurements are then used in the analysis of system shape, density,

velocity dispersion, and anisotropy for the systems.

Systemic axis ratios are calculated throughout an evolution using the moment of inertia

tensor of the innermost 95% of the mass. We exclude the outermost 5% as it is sometimes

not in mechanical equilibrium. These axis ratios are reported as b
a

and c
a
, where a, b, and

c are the lengths of the long, intermediate, and short axes of a system. Initially, b
a

and c
a

are both very close to 1, as one would expect for a spherical system. There are four system

shapes that we differentiate. If b
a
≈ c

a
> 0.8, we consider the system to be spherical. We

chose this definition largely because systems fulfilling this criteria look spherical, by eye. We

consider systems oblate spheroidal when b
a

& 0.8 and c
a

. 0.8. If the axis ratios of a system

are b
a
≈ c

a
< 0.8, we refer to it as prolate spheroidal. Finally, triaxial systems are those that
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have b
a
6= c

a
, b

a
< 0.8, and c

a
< 0.8. In general, to determine whether or not the ROI has

occurred, we need only observe whether or not a system has evolved from a spherical shape

to one of the other three. Given that c
a

compares the shortest axis to the longest, we use its

minimum value during an evolution to gauge the maximum strength of the ROI.

We divide systems of particles into concentric spherical shells, each containing 5% of

the total mass (typically 500 particles). This gives us a radial profile of quantities like

density and velocity distributions. The inner/outer radii and average densities of the shells

are saved. The velocity dispersions and β-values for the particles in each shell are also

calculated throughout the evolution. We quantify the velocity anisotropy of our models

using the fractions of particles that are on isotropic, tangentially anisotropic, and radially

anisotropic orbits. The mass within a shell is considered to be isotropic if −1.0 < β < 0.5,

tangentially anisotropic if β < −1.0, and radially anisotropic if β > 0.5. For example, if

a given model has 5 shells that are isotropic, 10 shells that are radially anisotropic, and 5

shells that are tangentially anisotropic, we would assign an isotropic mass fraction µi = 0.25,

a radial mass fraction µr = 0.50, and a tangential mass fraction µt = 0.25. While µr and µt

can be combined to account for the total anisotropic mass fraction µa, where µi + µa = 1,

we distinguish the two types of anisotropic motion to quantify their behaviors and isolate

their impacts during the ROI.

Rather than using ra, which does not have a simple physical interpretation, we use these

mass fractions to quantify the anisotropy of our models. Specifically, we use the initial radial

mass fraction µr,0 as one of our parameter space dimensions (initial density profile and Q0

are the other two). It should be mentioned that µr has a monotonic, one-to-one correlation

with the global anisotropy parameter A ≡ 2Tr/Tt, where Tr is the kinetic energy of radial

motions and Tt is the kinetic energy in tangential motions. This global quantity has been

used as a predictor of ROI by Polyachenko & Shukhman (1981); Merritt & Aguilar (1985);

Barnes et al. (1986); Bellovary et al. (2008). The benefit of using µr,0 rather than A0 is

that µr,0 has a more straightforward interpretation. We point out that the work presented

here is a much more thorough examination of parameter space than was attempted in any

previous work. We report on the correlations between our parameter space dimensions in

the next section.

3. Results

We have found that both Q0 and µr,0 influence the onset and evolution of the ROI. First,

we look at how the ROI, in hot and warm systems, is affected by increasing µr,0. Second, we

find that cold systems have an initial density profile dependence which influences the ROI.

The axis ratios that are discussed in this section are the values of b
a

and c
a

when c
a

is at its

minimum for the evolution; i.e.,, the maximum departure from spherical symmetry.
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3.1. Hot & Warm Models

For hot and warm systems (Q0 ≥ 0.2), we find that systems with small µr,0 retain

spherical shapes, while larger values of µr,0 lead to prolate and triaxial systems. This behavior

is independent of initial density profile. Our results show that there is a threshold value for

µr,0 beyond which our models no longer remain spherical; they will evolve into prolate

spheroidal or triaxial shapes.

When comparing systems with different initial density profiles, there are three different

µr,0 threshold values that are largely independent of Q0. An example of this behavior is

shown in Figure 1 for a model with Q0 = 0.5 and an initially Gaussian density profile (we

Fig. 1.— Panels a, b, and c show the minimum axis ratios for the innermost 95% of mass

as functions of µr,0 for models with constant, cuspy, and Gaussian initial density profiles,

respectively. The dot-dash line represents the minimum b
a

axis ratio and the solid line

represents the minimum c
a

axis ratio. While these specific correlations derive from models

with Q0 = 0.5, we find nearly identical behaviors in all models with Q0 ≥ 0.2. The spherical-

to-non-spherical anisotropy threshold values for the three initial density cases are; µr,0 = 0.42

for Gaussian models, µr,0 = 0.52 for cuspy models, and µr,0 = 0.66 for constant density

models.
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note that this curve is nearly identical for the Q0 = 1.0 and 0.2 models). When µr,0 ≤ 0.42,

Gaussian models remain approximately spherical. As µr,0 increases (0.42 ≤ µr,0 ≤ 0.76),

Gaussian models become prolate spheroidal at the height of the ROI. For models with

µr,0 ≥ 0.76, the systems become more triaxial as µr,0 increases; the minimum c
a
value continues

to decline but the minimum b
a

value begins to rise. We see a very similar pattern for all

three initial density profiles when Q0 ≥ 0.2. Initially cuspy and constant density models

have spherical-to-non-spherical threshold values of µr,0 = 0.52 and µr,0 = 0.66, respectively.

We explain the observed increase in threshold value as follows. Each density profile

(constant, cuspy, and Gaussian) provides a different concentration of particles near the cen-

ters of systems. Constant density models will have the fewest particles near the center and

Gaussian models will have the most. Any bar-like structure that appears near the center

of a system with a high central density can easily ensnare neighboring particles and grow

stronger. A similar structure in a system with a relatively lower central density can only grow

stronger if particles from the outer regions of the system come into the center where they

can be trapped by the growing bar. Because of the imposed shape of the initial anisotropy

profile, larger values of µr,0 correspond to systems with smaller isotropic central regions and

larger regions of radially anisotropic mass extending inward from the edge. Systems with

lower central density can fall prey to the ROI only if there are enough outer region particles

coming into the center, and that requires a larger µr,0.

3.2. Cold Models

Cold models (Q0 = 0.1) behave somewhat differently than their warm and hot counter-

parts. The combination of small initial particle velocities and the gravitational pull towards

the center of the system greatly increases the number of particles with almost purely radial

motion. While this collapsing motion does not initially create high velocity dispersions, par-

ticles that have passed through the center of mass quickly create the dispersions needed to

initiate the ROI; for more details on cold system collapses related to ROI, see Barnes et al.

(2009). These delayed, but strong dispersions, lead to an overall increase in the strength of

the ROI, but the radial mass fraction µr,0 is no longer the primary instigator of the ROI due

to the low initial particle velocities.

Figure 2 illustrates the behavior of Q0 = 0.1 model axis ratios as a function of initial

radial mass fraction for each initial density profile. The Gaussian and cuspy models still

follow the same basic pattern as those of the warmer models with the exception that their

threshold values for µr,0 are significantly lower; Gaussian and cuspy models have threshold

values of µr,0 = 0.18 and µr,0 = 0.26, respectively. Models with constant density no longer

follow the same type of pattern. This is not surprising since many of these cold evolutions

lead to large amounts of mass loss (up to ≈ 35%) for this initial density profile. The systems

that the axis ratios are measuring in these cases are really just “core” remnants of the initial
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systems. Again, the ROI will not occur if the bar-like structure near the center cannot grow.

Fig. 2.— As in Figure 1, panels a, b, and c display the minimum axis ratios for the in-

nermost 95% of mass as functions of µr,0 but for cold models with Q0 = 0.1. From top to

bottom, the panels represent models with initially Gaussian, cuspy, and constant density

profiles. The dot-dash lines represent the minimum b
a

axis ratios and solid lines represent

the minimum c
a

axis ratios. The threshold values for the Gaussian (µr,0 = 0.18) and cuspy

models (µr,0 = 0.26) are substantially lower than in warmer models, but the presence of the

threshold remains quite clear. Models with initially constant density profiles do not show

clear threshold values. The axis ratios instead have moderately non-spherical values for low

µr,0, and become somewhat more triaxial as µr,0 increases. We suspect this difference in

constant density model behavior stems from the significant mass loss that can occur in these

models.

4. Summary & Conclusions

In an effort to increase the understanding of the physics involved in dark matter halo

formation and evolution, we have created a suite of models with initial conditions designed

to explore a parameter space relevant to the radial orbit instability (ROI). The ROI is an

important process in dark matter halo evolution as it changes the overall shape of a system,

impacting the density and velocity distributions. These are fundamental quantities that are
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necessary when comparing the results of simulations to observations.

We create models with different initial density profiles, initial virial ratios Q0 and initial

radial mass fractions µr,0. We explore this parameter space by evolving our models with a

well-known computer code that accurately follows the behavior of self-gravitating systems.

In particular, we are interested in how the overall shapes of our models (quantified by axis

ratios) change during their evolutions. Systems that evolve from spherical to either prolate

spheroidal or triaxial shapes indicate the presence of the ROI.

We have identified threshold values of µr,0 that separate systems of particles that evolve

spherically from those that become non-spherical. Dynamically hot and warm models have

similar behaviors, in that a clear transition is visible in terms of µr,0 values. Sets of models

with each initial density profile show this same behavior, but the specific threshold value

changes slightly for each. Models that are dynamically cold react differently than those

that are warm. Cold, initially constant density models tend to lose substantial fractions of

mass during their evolutions, leaving nearly spherical remnants for almost all values of µr,0.

Initially cuspy and Gaussian models again have threshold µr,0 values, but the values are much

lower than those for the hot and warm models. This is not surprising as the colder initial

conditions allow the systems to develop some radial velocity anisotropy through collapse; a

smaller amount of initial anisotropy is required to trigger the ROI.

The following chart summarizes how the values for µr,0 relate to Q0, initial density

profile, and the shape of the system when the ROI is at maximum strength. The smaller

µr,0 number is the threshold value needed to initiate the ROI. Models with smaller values

remain spherical. The larger µr,0 number defines the break between prolate and triaxial

systems, with larger µr,0 leading to triaxial shapes. Systems with intermediate values will

result in prolate spheroidal systems. See Figure 3 on the following page for a more visual

interpretation.

Q ρ(r) Prolate Spheroidal Range

constant 0.66 < µr,0 < 0.92

1.0 cuspy 0.52 < µr,0 < 0.80

Gaussian 0.42 < µr,0 < 0.76

constant 0.66 < µr,0 < 0.86

0.5 cuspy 0.52 < µr,0 < 0.80

Gaussian 0.42 < µr,0 < 0.76

constant 0.66 < µr,0 < 0.86

0.2 cuspy 0.52 < µr,0 < 0.80

Gaussian 0.42 < µr,0 < 0.88

constant ...

0.1 cuspy 0.26 < µr,0 < 0.62

Gaussian 0.18 < µr,0 < 0.76
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Constant

Cuspy

Gaussian

Fig. 3.— The shaded regions in these panels show the boundaries for initial conditions

that produce the listed system shapes when the ROI is at its maximum strength. Spherical

shapes result from initial conditions in the white areas, prolate shapes result from initial

conditions in the light gray areas, and triaxial shapes result from initial conditions in the

dark gray areas. Panels a, b, and c represent initially constant, cuspy, and Gaussian density

distributions, respectively. In summary, an initially spherical system will evolve into either a

prolate or triaxial system if µr,0 is high enough. While threshold values for µr,0 are relatively

constant for Q0 ≥ 0.2, µr,0 has less of an effect as Q0 . 0.1.

The authors gratefully acknowledge support from NASA Astrophysics Theory Program

grant NNX07AG86G.
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Abstract

Time-resolved photoelectron spectroscopy (TRPES) is used to measure electronic excited 
state lifetimes in the DNA base adenine. A detailed description of our femtosecond (fs) laser 
system, gas-jet molecular beam source, and photoelectron photoion coincidence (PEPICO) 
spectrometer is given. Ion mass spectra and photoelectron kinetic energy spectra are presented 
for adenine excitation by 251 nm and ionization by 200 nm. Koopmans’-like ionization 
correlations are compared to photoelectron spectra, and the states S2(��*) and S1(n�*) are 
identified as participating in the electronic relaxation. We determine that the initially excited 
S2(��*)  state quickly (�1 = 71 ± 16 fs) decays to populate the S1(n�*)  state, followed by a slow 
decay to S0(�2 = 950 ± 50 fs). Our experiments are in good basic agreement with previously 
reported experiments.1 

Introduction 

Excited electronic states are created in molecules by absorption of UV photons. 
Molecular dissociation can occur while in this energetically unfavorable excited state. Therefore, 
relaxation from unstable excited states to the ground 
state on ultrafast timescales makes some 
biomolecules stable under UV radiation. Ultrafast 
relaxation processes have been observed in gas-
phase DNA bases and have been the subject of 
many experimental and theoretical studies due to 
the inherent significance to the photostability of our 
genetic material.2 To this point, adenine has 
received the most attention, but none of the 
proposed models of such processes are consist-
ent with all experimental data.  

Here we focus on the relaxation dynamics of 
the excited states in adenine which are populated by 
absorption of UV photons. Only transitions from the 
ground state, S0, to low energy excited states are 
accessible with the UV wavelengths of interest. 
These transitions involve excitation of electrons in Figure 1. Molecular structure of adenine monomer
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the highest occupied molecular orbitals (HOMO) into the lowest unoccupied molecular orbitals 
(LUMO). Specifically, the S2(��*) state is populated by absorption at 251 nm; subsequent non-
radiative decay of the S2(��*) state creates population in the S1(n�*) and S3(��*) states. 

In a very simplistic picture, molecular orbitals (MO) can be thought of as a linear 
combination of atomic orbitals (AO). In a bonding combination the electron density between 
nuclei is increased. This causes stabilization whereas an anti-bonding combination reduces the 
electron density between nuclei and destabilizes the bond. When electrons are excited they 
obtain an anti-bonding configuration (�* or �*). The photostability of adenine is created by its 
ability to relax from these anti-bonding orbitals on ultrashort timescales. The atomic character of 
the shared electrons determine the character of the MO. Shared s-type or in-plane p-type 
electrons reside in � orbitals, and shared out-of plane p-type electrons are in � orbitals. Non-
bonding electrons such as lone pairs are said to be in n orbitals.  

We use the following notation to identify molecular states: S is a singlet state with paired 
electrons of opposite spin; D is a doublet state with one unpaired electron. A subscript is used to 
denote the energy level, with S0 being the ground state and S1, S2, and S3 being the first, second, 
and third excited state, respectively. We identify the electronically excited state by (��*) which 
denotes promotion of an electron from a � orbital to a �* orbital. For example, S1(n�*) is the first 
excited state, of singlet character, produced by exciting a n electron into a �* orbital. 

Ab initio quantum chemical studies have predicted that several energetically low-lying, 
singlet excited states play a potential role in adenine’s deactivation dynamics. Based on these 
studies, various relaxation pathways have recently been proposed;3,4,5 most relevant are the 
following: Broo’s model4 predicts internal conversion from the initially excited S2(��*) state to 
the S1(n�*) state followed by relaxation back to the S0 ground state. Puckering of the six-
membered ring occurs in the S2(��*) to S1(n�*) conversion, and further puckering initiates 
relaxation back to the S0 ground state. Sobolewski and Domcke’s alternative two-step relaxation 
pathway5 involves internal conversion through conical intersections from the S2(��*) state to the 
repulsive S3(��*) state followed by decay back to the S0 ground state. Relaxation through the 
S3(��*) state involves elongation of the N(9)-H bond which is located on the five-membered 
ring as indicated in Figure 1.  

Experimentally, the low-lying states of ��* and n�* character have been identified in 
spectrally resolved molecular beam studies6,7 such as resonance-enhanced multiphoton ionization 
(REMPI) and laser-induced fluorescence (LIF). The ��* states are difficult to detect 
spectroscopically as they are optically dark in absorption. Hence, many experiments are limited 
to indirect probes such as substitution effects and detection of H-atoms released from the N(9)-H 
group.

Adenine’s relaxation dynamics have been studied using time-resolved ion yield 
measurements. A double exponential decay was observed with time constants of approximately 
100 fs and 1.0-1.3 ps following 267 nm excitation.8,9 Unfortunately, this technique provides no 
means of directly identifying the excited states involved in the relaxation. The lifetimes changed 
insignificantly upon deuteration and methyl substitution of the N(9)-H bond. Therefore, it was 
concluded that the S3(��*) state is not involved in the deactivation process.8  However, this 
observation is in disagreement with spectroscopic experiments that have detected H-atoms 
released along the N(9)-H coordinate.10 Time-resolved photoelectron spectroscopy (TRPES) has 
recently been used to study the relaxation dynamics in adenine following 267 and 250 nm 
excitation. These experiments showed a double exponential decay with time constants of 50 fs 
and 1.2 ps and unambiguously identified the associated S2(��*) and S1(n�*) states, 
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respectively.1,11 At 267 nm, a decrease in the n�* amplitude indicates the presence of an 
additional channel involving the S3(��*) state. This assignment has been confirmed through 
methylation of the N(9)-H group.11 However, no evidence for the ��* channel was found in 
time-resolved photoelectron imaging experiments at this excitation wavelength.12 

Due to the inconsistencies outlined above we have reinvestigated the photodynamic 
properties of adenine using TRPES. In this paper, we describe in detail our newly constructed 
experimental setup and present our first TRPES spectra of adenine recorded at an excitation 
wavelength of 251 nm. Both time constants and decay-associated spectra reproduce previously 
reported TRPES results mentioned above. 

Experimental Technique 

The basis of our TRPES experiment is 
the familiar concept of the photoelectric effect 
which states that if light of sufficient energy 
hits a metal, electrons will be emitted with a 
very specific amount of kinetic energy. The 
photoelectron kinetic energy is equal to the 
energy imparted by incident photon minus 
the work function of the metal. The work 
function is the minimum energy required to 
remove one electron from the surface and is 
characteristic of the metal. If we consider 
photoionization of gaseous atoms or 
molecules, then the work function correlates 
to the ionization potential (IP) or electron 
binding energy. Two species with different 
IP’s will therefore produce photoelectrons 
with different energies. In our application of 
TRPES we photoionize large biomolecules in 
the gas-phase and measure photoelectron 
kinetic energy in order to identify the excited 
states which participate in ultrafast 
deactivation pathways.   

Deactivation pathways might consist 
of several internal energy conversion steps, and TRPES provides a unique way to directly 
identify the electronic character of participating excited states in addition to their lifetimes.  The 
general scheme involves preparation of an excited state, dynamical evolution and a time-delayed 
probe through ionization. The pump laser populates an electronic excited state by absorption of 
one photon. The population evolves by internal conversion processes which lead to lower energy 
electronic levels that carry higher vibrational energy. The time-delayed probe laser then 
promotes ionization of the population and is thus a measure of the excited states which are 
present. By changing the time delay between pump and probe pulses one can determine how the 
population changes with time. In TRPES, photoelectron kinetic energy spectra are measured as a 
function of the pump-probe delay (�t) thus providing spectroscopic and dynamic information. To 

Figure 2. Diagram of a two-state electronic relaxation 
mechanism. 
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demonstrate the TRPES experimental technique, a diagram of a two-state relaxation mechanism 
is shown as Figure 2. 

The pump pulse excites a molecule from the ground state to an optically bright excited 
state A which can be coupled to another excited state B. State A decays into an energetically 
lower, electronic state B in time �1. During the relaxation process, the difference in electronic 
energy is converted into vibrational energy since the molecules are isolated from the 
environment. The time-delayed probe then promotes ionization of the excited state population.  
In general, A and B have different electronic character and preferentially ionize into ionic states 
A+ and B+, respectively. Upon ionization, photoelectrons will be emitted with kinetic energy 
equal to the total photon energy minus the energy of their respective ionic states and the TRPES 
spectrum will show distinct bands a and b. Therefore, ionic state energy is determined by 
measurement of photoelectron kinetic energy. Comparison to He(I) photoelectron spectra 
provides the assignment for the ionic states and through calculated ionization correlations the 
excited states can be identified. After excitation, the population in state A decreases with time �1 
and the photoelectron band a decays. As A decays to populate state B the photoelectron band b 
increases. State B then decays to the ground state with time �2, and the photoelectron band b 
decreases. Measuring the change in these photoelectron bands as a function of �t reveals the 
dynamics of each excited state. Using this technique, TRPES is a powerful tool which allows 
identification of electronic excited states and their associated lifetimes simultaneously.  
 
 
Experimental Setup 

 The experimental setup used for these studies consists of three main parts: femtosecond 
(fs) laser system, gas-jet molecular beam source, and photoelectron photoion coincidence 
(PEPICO) spectrometer. Details of each component are given here.   
 
Laser System 

The commercially available fs laser system from Coherent Inc. consists of Verdi V5 and 
Evolution 30 pump lasers, a Mira 900 Oscillator, a Legend high-energy amplifier, and an OPerA 
optical parametric amplifier (OPA). A schematic is shown as Figure 3. A description of IR pulse 
production and UV pulse conversion follow. 

The Mira 900 Ti:Sa oscillator is pumped by the Verdi V5 and produces pulses of 94 ± 7 
fs centered on 801 nm with 12 nm bandwidth. This output is split into a seed for the amplifier 
and a beam for pulse duration measurements using a home-built single-shot autocorrelator. 

The Legend high-energy amplifier is based on chirped pulse amplification. The seed 
pulse is temporally stretched by a diffractive grating, amplified in a Ti:Sa rod, and then 
temporally recompressed by an opposing grating. This keeps the peak intensity low during 
amplification and prevents damage to the optical components within the lasing cavity. The 
Legend output is 2.5 W at 1 kHz repetition rate, centered on 801 nm with 12 nm bandwidth. 
Amplifier pulse durations of 130 ± 5 fs are measured with a home-built scanning autocorrelator. 
The output is split to produce both the tunable UV pump pulse and the 200 nm probe pulse.  
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UV pulses with wavelengths between 240 and 270 nm are created by the Coherent Inc. 
OPA from 1.0 W of the amplifier output. Inside the OPA, two IR pulses are created and used for 
conversion to the UV. The conversion is based on sum frequency and second harmonic 
generation of the IR pulses, and produces 10-20 �J pulses. 

Probe pulses are created from 650 mW of the amplifier output by 4th harmonic 
generation, using a three stage conversion scheme. A diagram of the conversion is included in 
Figure 3. In the first step, the 2nd harmonic (400 nm) is produced by frequency doubling in a 
BBO crystal. The second step produces the 3rd harmonic (267 nm) by mixing the fundamental 
and 2nd harmonic in BBO. The third step produces the 4th harmonic (200 nm) by mixing the 
fundamental and 3rd harmonic in BBO.  Our home-built conversion setup produces 4-5 �J probe 
pulses at 200 nm. 

To study the dynamics of molecular excited states we need to observe photoionization 
events created by one pump photon and one time-delayed probe photon. We must both spatially 
and temporally overlap our two pulses in order to maximize the desired two-color ionization. 
Pump and probe beams are combined on a dichroic optic and travel collinearly to the ionization 
region where they are focused onto the molecular beam by a UVFS lens of 75 cm focal length. 
Spatial overlap is created by adjusting the pointing of the probe pulse, and temporal overlap is 
achieved by adjusting the path length of the pump pulse. A motorized delay stage is used to 
change the pump pulse path length with 0.5 �m precision. The path length (delay position) of the 
pump pulse which creates the most two-color ionization is termed T0. 
 
Molecular Beam 
 

A continuous gas-jet molecular beam source prepares adenine molecules in the gas phase. 
Our molecular beam source chamber is comprised of two differentially pumped vacuum regions 
and is shown as Figure 4. The basic molecular beam principle is to confine gas at high pressure 
(HPR), and allow it to expand into vacuum through a micrometer sized pinhole (PH). All but the 
center portion of the escaping molecules are blocked by two conically shaped apertures 
(skimmers), which are placed in the beam path between the pinhole and the spectrometer. Each 
skimmer (S1, S2) has an electroplated opening to reduce turbulence as gas passes, and each of 

Figure 3. Schematic of Coherent Inc. fs laser system. Also shown are our home-built setup for UV pulse 
conversion and two autocorrelators. 
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the skimming stages is differentially pumped to remove the blocked molecules. The molecular 
beam source provides a high density of molecules in the ionization region while keeping the 
pressure low in the spectrometer flight 
tubes. 

Gaseous molecular beams are 
created as described above and are used 
for instrument calibration, but the 
adenine we wish to study is in powder 
form. To create adenine in the gas phase, 
we heat the sample to 200º C inside the 
high pressure region. The entire nozzle 
assembly is temperature controlled by a 
solid state relay and a resistive band 
heater (H). Helium gas is supplied 
continuously to the high pressure region 
by ¼ in. copper tubing (GS), and carries 
adenine vapor toward the ionization 
region upon expansion.  

Spectrometer Chamber 

A schematic of our PEPICO spectrometer is shown as Figure 5. Pump and probe pulses 
intersect with the molecular beam in the ionization region (yellow ring) where photoelectrons 
and positively charged ions are created. Photoelectrons are steered upward by a bottle-shaped 
magnetic field, and cations are electrostatically accelerated downward where they are detected 
independently. Photoelectron energy and cation mass are determined by measuring the time of 
flight (TOF) between photo-ionization and detection. TOF spectra are produced by a multiscaler 
card, which measures the timing between a reference pulse (start) and a detector pulse (stop). A 
TOF spectrum is recorded at each pump-probe delay to determine excited state dynamics. Details 
of the electron and ion spectrometers follow. 
 
Magnetic Bottle Electron Spectrometer 

Photoelectrons are emitted with a random angular distribution during ionization. The 
detector is placed some distance from the ionization region, so electrons emitted away from the 
detector must be redirected toward the detector. A bottle-shaped magnetic field is used to collect 
up to 50% of the emitted electrons. 13 This field is created by a strong permanent magnet (RM) in 
conjunction with a relatively weak solenoid (S). The permanent SmCo magnet is an axially 
magnetized cylindrical ring that produces an inhomogeneous field of 0.5 T at the maximum 
along the center axis. 

 The ionization region (yellow ring) is placed between the solenoid and the ring magnet. 
The inhomogeneous field directs photoelectrons emitted away from the detector toward the 
solenoid, where they follow a helical path along the field lines until reaching the electron 
detector (ED). To negate any electrostatic forces, the ring magnet, entrance grid (EE), ion optics 
(IO), and electron flight tube are held at ground potential. The energy resolution of the electron 
spectrometer is determined by the ratio of ring magnet strength to solenoid field strength.13 The 

Figure 4. Schematic of molecular beam source chamber.  
GV-manual gate valve, S1 and S2-skimmer, PH-200�m 
pinhole, SH-glass sample holder, HPR-high pressure region, 
GS-gas source, H-heater, d1=15mm, d2=150 mm. 
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solenoid is surrounded by a �-metal 
magnetic shield (MS), which blocks 
external fields and allows the solenoid 
field strength to be kept low.  

The photoelectron detector is a 
40 mm diameter paired multichannel 
plate. The detector input is held at 
ground, where photoelectrons interact 
with the surface and create secondary 
electrons within the detector channels. 
Secondary electrons are multiplied by an 
avalanche process and attracted to the 
detector anode, which is held at +4.2kV. 
The arrival of the secondary electron 
avalanche at the anode creates a 
negative pulse of a few ns duration. A 
capacitive coupling box is used to obtain 
signals with respect to ground instead of 
the anode high voltage. Detector pulses 
are amplified and sent to the multiscaler 
to produce TOF spectra. 
 To determine which excited 
states of adenine are involved in 
relaxation, one must know the electron 
energy, not TOF. 1,3 butadiene is used to 
convert our TOF spectra into energy 
spectra. The 1,3 butadiene photoelectron 
spectrum displays discrete peaks 
corresponding to different vibrational 
levels of the ion. The energy of these ionic levels is known from He(I) photoelectron 
spectroscopy.14 Assigning TOF peaks to these energy levels serves as calibration. 

Ion Spectrometer 
 
  Upon ionization, cations have a velocity associated with the molecular beam only, unlike 
photoelectrons. It is therefore possible to use an electrostatic field to collect all cations created in 
the ionization region. Ions are accelerated from the ionization region in two steps. First, ions are 
accelerated by the repeller (R) grid, held at + 1 kV, to ground at the magnet entrance (G). The 
ring magnet entrance and exit are held at ground, creating an electrostatic field-free region within 
the magnet. After traversing the magnet, ions are accelerated to the flight tube entrance grid (IE) 
held at – 1 kV. The flight tube entrance grid and detector input grid are held at the same potential 
and define the field-free ion flight tube (IFT). Ions travel through the IFT at constant velocities 
unique to each mass. This creates a temporal separation of ions by mass and allows 
determination of an ion species by measuring its TOF. Ion optics (IO) inside the drift region 
correct for the molecular beam velocity. Ions are accelerated from the ion flight tube exit to - 4.2 
kV at the ion detector (ID) input. The ion detector is a 20 mm diameter paired multichannel plate 

Figure 5. Schematic of PEPICO spectrometer. Laser pulses 
propagate into the page and the yellow ring marks the 
ionization region. MBS-molecular beam source, ED-
electron detector, MS-magnetic shield, S-solenoid, EE-
electron flight tube entrance grid, R-repeller, RM-ring 
magnet, G-ground, IE-ion flight tube entrance grid, IO-ion 
optics, IFT-ion flight tube, ID-ion detector.  
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similar to the electron detector. Negative ns pulses are created at the grounded anode, amplified 
and then sent to the multiscaler in order to produce TOF spectra. 

Our TOF ion spectrometer is used to determine the mass of the species present in the 
molecular beam. TOF peaks produced by ionization of nitric oxide (NO) and 1,3 butadiene are 
used to convert from TOF to ion mass.   

Data Collection 
 
TRPES requires that TOF spectra are recorded while the pump-probe delay is varied. 

Excited state dynamics are revealed in how the ion mass or photoelectron kinetic energy spectra 
change as a function of �t. The entire data collection procedure is computer-controlled, using 
LabView, which controls the delay stage and records TOF spectra according to scan parameters 
defined before experimentation. These parameters include: starting delay position, delay step 
size, total delay range, number of times the delay range is traveled and number of start pulses 
recorded for each TOF spectrum. The delay range is scanned several times to average out long 
term drifts in laser power or molecular beam intensity, and each TOF spectrum is averaged over 
many start pulses to account for short term fluctuations. Mechanical shutters placed in the pump 
and probe beam paths allow measurement of pump- or probe-only (one-color) and pump-probe 
(two-color) spectra at each delay. Background ionization levels and stable experimental 
conditions are determined from the one-color spectra. The number of starts to average is 
controlled independently for the one-color and two-color spectra.  

When studying photoelectron spectra from two-photon ionization, background signals 
arise from two main sources. First is the signal contribution due to multi-photon interactions 
from each individual wavelength. Second is the contribution to the electron signal from free 
electrons which are not produced by photoionization of the sample. We aim to measure these 
background signal levels and subtract them from the total signal in order to study the two-color 
processes only. The mechanical shutters allow the one-color contribution to be measured in real 
time. This signal is directly subtracted from the total signal. The free electron background is 
measured by blocking the molecular beam and recording signal levels from pump and probe 
pulses separately. We determine that the 200 nm beam produces over 95% of stray electrons in 
our system. The stray electron contribution is included in the 200 nm one-color signal, and is 
therefore accounted for in the subtraction step mentioned above. 

Results and Discussion  

In this section we report decay lifetimes excited states of adenine following excitation at 
251 nm. TRPES is used to identify two coupled, excited states which follow the relaxation 
mechanism described above. Electron energy spectra are used to infer the specific excited state 
through comparison to Koopmans’-like ionization correlations. The spectra are integrated over 
electron energy, as described in detail below, and fit with an exponential decay with Gaussian 
convolution to determine excited state lifetimes. 

Our TOF ion spectrometer is used to determine the species present in the molecular 
beam. The mass spectrum, shown as Figure 7, is produced by co-expansion of heated adenine 
with 50 torr He carrier gas. Over 98% of ions are from the adenine monomer; therefore the 
photoelectron spectra we measure are predominantly from adenine.  
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Collapsed photoelectron 
spectra are shown in Figure 8. 
Matrix A is probe only, matrix B is 
pump only, and matrix C is pump-
probe. Matrices A and B are scaled, 
due to the difference between the 
number of start pulses recorded for 
one-color versus two-color spectra. 
Matrix D is the background 
subtracted two-color only signal, 
produced by subtracting matrices A 
and B from matrix C. In each plot 
electron TOF is on the x-axis and 
pump-probe delay is on the y-axis. 
Photoelectron counts at each energy-
�t coordinate are represented by the 
color scale which is the same in each 
plot. Referring to Figure 2, one can 
see that it is possible to determine the energy of the ionic states A+ or B+ by measuring 
photoelectron kinetic energy. The ionic state energy is the difference between the total photon 
energy and the photoelectron kinetic energy, and is termed electron binding energy. Our two-
color only TRPES spectrum is converted from TOF to electron binding energy and is shown in 
the center of Figure 9. This spectrum is used to extract spectroscopic and dynamic information. 
Visual inspection of this plot shows that the energy spectrum is different in the three different �t 
regimes, labeled A, B and C. Different excitation-ionization processes contribute to the two-
color signal in each regime. In A 
the probe is far delayed from the 
pump, and only the pump-probe 
process contributes. In B the pump 
and probe are overlapped, therefore 
both pump-probe and probe-pump 
processes contribute. In C the 
probe comes before the pump, and 
only the probe-pump process 
contributes. The electron binding 
energy spectra are integrated over 
the three �t regimes and shown at 
right of Figure 9. In A the 
integration is over 1200 fs, in B 
and C the integration is over 450 
fs. These integrated energy spectra 
are used to identify which excited 
states participate in the electronic 
relaxation of adenine.  

Figure 7. Mass spectrum produced by co-expansion of adenine 
with 50 torr of He. 

Figure 8. Photoelectron TOF spectra: A-200 nm, B-251 nm,  
C-200 + 251 nm, D-two-color only. 
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We assign the bands in our photoelectron spectrum by comparing them to ionization 
potentials (IP) known from He(I) photoelectron spectroscopy.15 Two ionization potentials are 
identified, IP0 = 8.5 eV and IP1 = 9.6 eV, and are shown as stars in plots A and B of Figure 9. IP0 
and IP1 are from the D0(�-1) and D1(n-1) cation states, respectively. In A we assign the pump-
probe channel to the D1(n-1) cationic state. In B, a band near 9 eV arises in addition to the pump-
probe contribution, and is assigned to the D0(�-1) cationic state. The band origin of the neutral 
excited state (S2) is near 282 nm,6 so our energy spectra are shifted by ~ 0.5 eV due to additional 
vibrational excitation at our pump wavelength. Koopmans’-like ionization correlations have been 
calculated (TD-B3LYP/6-31++G**) for adenine:1 S1, the lowest n�* state, preferentially ionizes 
into the D1(n-1)  cation excited state, whereas S2, the lowest ��* state, and S3, the lowest ��* 
state, both preferentially ionize into the D0(�-1) cation ground state. From these ionization 
correlations we assign the photoelectron band in A to the S1(n�*) excited state, and the additional 
photoelectron band in B to S2(��*). 

Lifetimes of the S1(n�*) and S2(��*)  states are determined independently. For each state, 
the photoelectron spectrum in Figure 9 is integrated over state specific energy-�t regions and is 
fit using the Levenberg-Marquard algorithm. An exponential decay function is convoluted with a 
Gaussian function with FWHM = 255 fs to account for the temporal duration of our laser pulse. 
The exponential time constants are determined and identified as the excited state lifetimes. 

 The photoelectron band for the short-lived S2(��*) state extends to electron binding 
energies between 8.75 and 9.5 eV. Several regions in this energy range are integrated over all 
pump-probe delays, and the lifetime of the S2(��*) state is determined to be 71 ± 16 fs. Fits are 

Figure 9. At left is the photoelectron spectra integrated over energy. At center is the electron binding energy 
spectrum as a function of �t. At right are the energy spectra integrated over different �t regimes: A-pump-probe, 
B-pump-probe and probe-pump, C-probe-pump. Stars show IP for D0(�-1) and D1(n-1) cation states. 
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run with different integration regions to neglect the long-lived state at higher electron binding 
energies and to determine our error. 

The S1(n�*) state is present in both regions A and B of Figure 9. Due to the overlap with 
S2(��*) in region B, only signal at long pump-probe delays is used to find the lifetime of the 
S1(n�*) state. The photoelectron spectrum is integrated over all electron binding energies and 
pump-probe delays greater than 350 fs. The spectrum is fit over several delay regions and the 
lifetime of the S1(n�*) state is determined to be 950 ± 50 fs.  

Summary

We confirm the following mechanism for adenine relaxation. Excitation by 251 nm is 
primarily to the bright S2(��*) state. A fast decay to the S1(n�*) state occurs in 71 ± 16 fs. The 
S1(n�*) state then decays to the ground state with lifetime of 950 ± 50 fs. Future plans include 
fitting the TRPES data in two dimensions simultaneously which will allow extraction of 
photoelectron spectra of the ��* and n�* states in the overlapping energy-�t region. Also, the 
dynamics of adenine at different excitation wavelengths will be studied to identify onsets and 
branching ratios of competing relaxation pathways, such as the ��* state discussed in the 
literature. 
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