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Abstract 

We applied variational method to calculate the first eight eigenvalues of quartic and sextic 

anharmonic oscillator potentials. By choosing a set of sophisticated trial wave functions, applying the 

orthogonal conditions between the eigenstates, and with the help of Maple software packages, we found 

that theses eight eigenvalues accurate and agree well with those obtained from the Runge-Kutta numerical 

integration method.   

 

I. Introduction 

A one-dimensional bound state problem, such as solving the time-independent Schrödinger 

equation with given potential V(x), 

  
−

h2

2m
d2ψ
dx2 + V(x)ψ = Eψ ,   (1) 

is a major subject regularly presented in the introductory quantum mechanics course. In most cases, the 

potential V x( ) is the harmonic oscillator potential 1
2 mω 2x2, where ω  is the angular frequency, because 
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its eigenvalues and eigenfunctions can be obtained analytically. On top of that the model can be applied in 

many different areas of physics to explain all kinds of periodic motions.  But when we extend the potential 

to the anharmonic region such as adding a quartic (αx4) and/or sextic (βx6) potentials, where α and β are 

coupling constants, the analytic solutions are practically impossible to achieve. Usually, an approximation 

scheme such as a perturbation method is used to undertake the problems, and it is accomplished in an 

order-by-order fashion, hence tedious expansion is needed. Another alternative is the variational method, 

[1] an approach that can be stated in a simple fashion and easily implemented, but requires good guess of a 

trial wave function. However it is always taught in a rather routine manner, namely the examples used in 

most textbooks are familiar problems with known solutions, not to mention that several important 

advantages of using the method, such as attaining remarkable precision of the eigenvalues and 

generalization to the high excited states, are seldom demonstrated. Previously the variational method had 

been carried out on the same potentials and emphasis was made on different choices of trial wave functions 

[2]. Later more detailed investigation was carried out to illustrate that impressively accurate ground state 

and first excited state eigenvalues could be achieved by adding more parameters to two sets of properly 

selected trial wave functions [3]. In this work, we extend the experiences we gained from studying the 

harmonic oscillator potential and applied them to the excited states of anharmonic oscillator potentials, we 

demonstrated that with the properly chose wave functions and orthogonality requirements between them, 

we were able to achieve their accurate eigenvalues, and found that they agree well with those obtained from 

the numerical integration method.  

 

II. Theory 

The variational principle used in solving time-independent Schrödinger equation states: for a 

given Hamiltonian Ĥ, the energy expectation value of any trial wave function ψtrial  we choose will always 

be greater than or equal to the true total ground state energy E tot : 

       E tot ≤ ψ trial
ˆ H ψ trial .          (2) 

This theorem is proved elegantly in all the known textbooks by constructing the trial wave functions as the 

linear combinations of all the eigenstates. In fact, this principle can be extended to the higher excited states 
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as long as the trial wave function is orthogonal to the previously determined ground state and lower excited 

states. The argument roughly goes like following: since all the eigenstates are orthogonal to each other, if 

the previously determined states are proved to be of lower energy, then the newly founded states can only 

be states with higher energies, i.e. excited states.  Nevertheless we seldom find any examples in the 

commonly used textbooks demonstrate this particular application. Therefore, it is the purpose of this work 

that we implement this application by calculating the first few excited states of  the x4 and x6 potentials. 

First, we review the variational procedures frequently stated in the textbooks: We choose a trial 

wave function ψtrial α,β ,γ ,...( ), where α, β, γ… are the variational parameters. With it we then form the 

expectation value of the system’s total energy; 

E tot = KE + PE .    (3) 

Then by differentiating the total energy with respect to all the variational parameters and simultaneously 

solve those equations (which may be nonlinear), we obtain the best set of parameters. Afterward we 

substitute the optimized parameters back into Eq. (3), and compute the total energy. In fact, these 

procedures can be applied to the first excited state especially when the potential is symmetrical, i.e. V(x) = 

V(-x), because the ground state wave function is certainly an even function, the orthogonality condition 

precludes the same parity for the first excited state wave function, thus it has to be odd in parity. Based on 

the known spectrum of the harmonic oscillator potential, we are aware that the wave functions of a 

symmetric potential can be divided into two categories according to their parities: even and odd, which are 

orthogonal to each other. Furthermore since coefficients of the wave functions are so well arranged that 

they are also orthogonal with each other, and are also orthogonal to each other within the same groups. In 

addition, we notice that there are more nodes in the higher excited states. In fact the number of nodes is 

commensurate to the order of the excited states, starting from the nodeless ground state and one node first 

excited state. So far the spectra of the quartic and sextic anharmonic oscillator potentials are not known 

analytically, but it is reasonable to assume that they have the similar property as that of the harmonic 

oscillator potential. Accordingly we assume the two categories of wavefunctions as following: the first four 

eigenstates of even parity are,  

ψ0 = exp −a0x2 − b0x4( ),                                     (4) 



Journal of Undergraduate Research in Physics 
June 12, 2008 

 

 4

ψ2 = 1− c2x2( )exp −a2x2 − b2x4( ),    (5) 

ψ4 = 1− c4x2 + d4x4( )exp −a4x2 − b4x4( ),    (6) 

ψ6 = 1− c6x2 + d6x4 − e6x6( )exp −a6x2 − b6x4( ).  (7) 

Then here are the first four eigenstates of odd parity, 

ψ1 = x exp −a1x
2 − b1x

4( ),      (8) 

ψ3 = x − c3x3( )exp −a3x2 − b3x4( ),    (9) 

ψ5 = x − c5x3 + d5x5( )exp −a5x2 − b5x4( ),   (10) 

ψ7 = x − c7x3 + d7x5 − e7x7( )exp −a7x2 − b7x4( ).  (11) 

where ai, bi (i = 0..7), ci (i = 2..7), di (i = 4..7), and ei (i = 6..7) are parameters to be determined from energy 

optimization. Owing to the orthogonally condition, that is   

ψi
*∫ ψ jdx = 0   if  i ≠  j,      (12) 

thus we can see that they are not completely independent of each other. However, we have to compute 

them sequentially, just to obtain E0 (the ground state energy) and E1 (first excited state energy) by using the 

standard energy optimization scheme. Then we use the obtained values of a0, b0 and a1, b1 to optimize the 

eigenenergies of ψ2  and ψ3 . Since we know that ψ2  has to be orthogonal toψ0  and similar condition goes 

to ψ3 and ψ1, we obtained c2 and c3 as: 

c2 =
exp − a0 + a2( )x2 − b0 + b2( )x4[ ]dx

−∞

∞∫
x2 exp − a0 + a2( )x2 − b0 + b2( )x4[ ]dx

−∞

∞∫
,   (13) 

and    c3 =
x2 exp − a1 + a3( )x2 − b1 + b3( )x4[ ]dx

−∞

∞∫
x4 exp − a1 + a3( )x2 − b1 + b3( )x4[ ]dx

−∞

∞∫
.   (14) 

Given that the ground state and first excited wave functions are automatically orthogonal to each other, 

parameters a0, b0 and a1, b1 are computed independently. Hence, we only have to vary a2, b2, and a3, b3 

during the optimization of E2 (second excited state energy) and E3.(third excited state energy) separately. 

After that, we proceed to ψ4  andψ5 , following the same orthogonality condition between them and the 
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previous determined eigenstates, we express c4, d4 and c5, d5 as the solution of the following linear 

simultaneous equations:          

    
α11c4 −α12d4 = α13

α21c4 −α22d4 = α23

⎧ 
⎨ 
⎩ 

     (15)  

     
β11c5 − β12d5 = β13

β21c5 − β22d5 = β23

⎧ 
⎨ 
⎩ 

     (16) 

where 

α11 = x2 exp − a0 + a4( )x2 − b0 + b4( )x4[ ]dx
−∞

∞∫ ,    (17) 

α12 = x4 exp − a0 + a4( )x2 − b0 + b4( )x4[ ]dx
−∞

∞∫ ,   (18) 

α13 = exp − a0 + a4( )x2 − b0 + b4( )x4[ ]dx
−∞

∞∫ ,   (19) 

α21 = 1- c2x2( )x2 exp − a2 + a4( )x2 − b2 + b4( )x4[ ]dx
−∞

∞∫ ,  (20) 

α22 = 1- c2x2( )x4 exp − a2 + a4( )x2 − b2 + b4( )x4[ ]dx
−∞

∞∫ ,  (21) 

   α23 = 1− c2x2( )exp − a2 + a4( )x2 − b2 + b4( )x4[ ]dx
−∞

∞∫ ,  (22) 

β11 = x4 exp − a1 + a5( )x2 − b1 + b5( )x4[ ]dx
−∞

∞∫ ,   (23) 

β12 = x6 exp − a1 + a5( )x2 − b1 + b5( )x4[ ]dx
−∞

∞∫ ,   (24) 

β13 = x2 exp − a1 + a5( )x2 − b1 + b5( )x4[ ]dx
−∞

∞∫ ,   (25) 

β21 = 1- c3x2( )x4 exp − a3 + a5( )x2 − b3 + b5( )x4[ ]dx
−∞

∞∫ ,  (26) 

β22 = 1- c3x2( )x6 exp − a3 + a5( )x2 − b3 + b5( )x4[ ]dx
−∞

∞∫ ,  (27) 

and   β23 = 1− c3x2( )x2 exp − a3 + a5( )x2 − b3 + b5( )x4[ ]dx
−∞

∞∫ ,  (28) 

then we express them in terms of the 2x2 determinants; 

c4 =

α13 −α12

α23 −α22

α11 −α12

α12 −α22

  d4 =

α11 α13

α21 α23

α11 −α12

α12 −α22

   (29) 
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and 

c5 =

β13 −β12

β23 −β22

β11 −β12

β12 −β22

  d5 =

β11 β13

β21 β23

β11 −β12

β12 −β22

   (30) 

Now we see that the optimization procedures of ψ4  andψ5  involved only two independent parameters 

each; a4, b4, and a5, b5. Finally, following the same reasoning, those three coefficients, c6, d6, and e6, and c7, 

d7, and e7, in the wave functions, ψ6  and ψ7 , can be expressed in terms of the 3x3 determinants. Since 

those expressions are lengthy, we present them in the appendix. Also the total energies calculated from 

those wave functions are tedious, yet the optimizations procedures are the same as those of the previous 

states. 

 One remark regarding a mathematical trick we used often: due to the choice of our trial wave 

functions, we frequently encounter a special integral [4, 5], 

exp −2ax2 − 2bx4[ ]dx
−∞

∞∫ =
1
4

a
b

K 1
4

a2

4b

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp a2

4b

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    (31),  

where Kσ z( ) is the modified Bessel function of fractional order σ. Based on that, we derived compact 

expressions for the following related integrals  

x2n exp −ax 2 − bx4[ ]dx
−∞

∞∫ ,   (32) 

where n is a positive integer, by differentiating repetitively the right hand side of Eq. (31) with respect to a 

and/or b and making use of the Bessel function recursion relations [4]. Even though the total energy 

equations of the excited states are lengthy and complicated, since all the integrals are analytical, the entire 

computation was reasonably fast because we did not have to evaluate them numerically. 

III. Results and discussion 
 

In this section, we report the numerical results obtained from using the variational method. In each 

of the following tables 1 - 4 we present the essential variation parameters, namely the ai and bi, (i = 0. 1...7), 

the coefficients of the x2 and x4 terms in the trial wave functions, variational eigenvalues and compare them 

with those obtained from the Runge-Kutta numerical integration. As we notice that all the discrepancies are 

within 0.1 %, also the systematic change of ai and bi: that is all ai are increasing and bi are decreasing when 
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progressing from low to high excited states that are more widespread. In addition, we only list ai and bi in 

the tables, because all the other parameters in the wave functions are derivable from them. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next we display figures 1 – 4 to show the wave functions of these two potentials, we observe that 

even though they share the similar feature as that of the harmonic oscillator potential, yet we can 

distinguish them from their ranges, namely the spread of the x4 potential wave functions are clearly wider 

than those of the x6.  

 

X4 Eigenstates (odd) 

X4 Eigenstates (even)  
 
 

 
  Variational and 

 
Numerical results 

ψ0, a0=0.545673 
     b0=0.074277 

 
      1.060450 

 
     1.060362    

ψ 2,a2=0.728631 
     b2=0.057914 

 
     7.455914 

 
     7.455698 

ψ4, a4=0.844816 
     b4=0.050574 

 
    16.262280 

 
   16.261826 

ψ6, a6=0.935001 
     b6=0.046006 

 
    26.529053 

 
   26.528471 

Table 1 

X6 Eigenstates (even)  
 
 

 
  Variational and 

  
Numerical results 

ψ0, a0=0.531079 
   b0=0.1774098 

 
       1.145193 

 
    1.1448025 

ψ2, a2=0.788120 
   b2=0.1738413 

 
       9..074538 

 
    9.0730846 

ψ4, a4=0.996391 
     b4=0.170359 

 
     21.717409 

 
    21.714165 

ψ6, a6=1.174986 
     b6=0.167198 

 
     37.618765 

 
    37.613087 

Table 3 

X6 Eigenstates (odd) 
 
 

 
Variational and 

 
Numerical results 

ψ1, a1=0.661166 
   b1=0.1769575 

 
        4.339415 

 
    4.3385987 

ψ3, a3=0.897997 
     b3=0.171806 

 
      14.937455 

 
   14.935170 

ψ5, a5=1.086226 
   b5=0.1692858 

 
      29.304083 

 
   29.299646 

ψ7, a7=1.262520 
     b7=0.164755 

 
      46.602822 

 
   46.595212 

Table 4 

X4 Eigenstates (odd) 
 
 

 
Variational and 

 
Numerical results 

ψ1, a1=0.652604 
   b1=0.0638284 

 
        3.799817 

 
     3.799673 

ψ3, a3=0.791054 
   b3=0.0537548 

 
      11.645050 

 
    11.644746  

ψ5, a5=0.892066 
     b5=0.048099 

 
      21.238893 

 
    21.238373 

ψ7, a7=0.987158 
   b7=0.0425794 

 
      32.100006 

 
    32.098598 

Table 2 
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Figure 1. First four even parity eigenstates of the x4 potential: ground state (red), second (blue), fourth 
(green) and sixth (brown) excited states. 



 9 

 
Figure 2. First four odd parity eigenstates of the x4 potential: first (red), third (green), fifth (blue) and 
seventh (brown) excited states. 



 10 

 
Figure 3. First four even parity eigenstates of the x6 potential: ground state (red), second (green), fourth 
(blue) and sixth (brown) excited states. 



 11 

 
Figure 4. First four odd parity eigenstates of the x6 potential: first (red), third (green), fifth (blue) and 
seventh (brown) excited states. 
 

To conclude, two remarks regarding our numerical computation are in order: first, when carrying 

out the numerical calculation, for convenience we set 2m, the Planck’s constant   

! 

h , and coupling constants 

of the potential in Eq. (1), α and β, equal to one. In fact, that is equivalent to transforming Eq. (1) to a 

dimensionless differential equation by using a simple scale transformation: i.e. when V(x) = αx4,, we 

convert it to 

! 

"
d
2#

dz
2

+z
4# = $#                    (33), 

by substituting z=
  

! 

h
2

2m"

# 

$ 
% 

& 

' 
( 

1
6

x  and  ε=
  

! 

2m

h
2

" 

# 
$ 

% 

& 
' 

2
3 E

(
1
3

, οr when V(x) = βx6, then we convert Eq. (1) to 
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− d2ψ
dz2 + z6ψ = εψ                                     (34), 

by substituting z=
  

h2

2mβ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
8

x  and  ε=

 

2m
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

3
4 E

β
1

4
. Second, we used the Maple 10 to perform all the 

analytical and numerical calculations, our worksheets are available for the interested readers, please send 

request to the attached addresses. 
V. Conclusion 
 

In this work, we applied the variational method to the quartic and sextic anharmonic oscillator 

potentials: first we choose a set of trial wave functions from studying the spectrum of harmonic oscillator 

potential and require them to be orthogonal to each other, then we demonstrated not only could we achieve 

accurate ground and first excited state energies, but also those of the higher excited states agree well the 

numerical integration scheme. Nevertheless the procedures have to be performed consecutively. Also, 

while carrying out this project, we used Maple 10 packages intensively and found that it is a useful tool in 

manipulating lengthy equations and optimizing variational parameters in complex trial wave functions.   
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VII. Appendix 

After we applied the orthogonality conditions, the coefficients, c6, d6, e6, c7, d7, and e7 in ψ6  and 

ψ7  are shown to be determined by the following linear simultaneous equations:  

  
γ11c6 − γ12d6 + γ13e6 = γ14

γ 21c6 − γ 22d6 + γ 23e6 = γ 24

γ 31c6 − γ 32d6 + γ 33e6 = γ 34

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
    (A1) 
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and  

δ11c6 −δ12d6 +δ13e6 = δ14

δ21c6 −δ22d6 +δ23e6 = δ24

δ31c6 −δ32d6 +δ33e6 = δ34

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
    (A2) 

where  

γ11 = x2 exp − a0 + a6( )x2 − b0 + b6( )x4[ ]dx
−∞

∞∫    (A3) 

 

γ12 = x4 exp − a0 + a6( )x2 − b0 + b6( )x4[ ]dx
−∞

∞∫    (A4) 

 

γ13 = x6 exp − a0 + a6( )x2 − b0 + b6( )x4[ ]dx
−∞

∞∫    (A5) 

 

γ14 = exp − a0 + a6( )x2 − b0 + b6( )x4[ ]dx
−∞

∞∫    (A6) 

 

     γ 21 = 1- c2x2( )x2 exp − a2 + a6( )x2 − b2 + b6( )x4[ ]dx
−∞

∞∫    (A7) 

 

     γ 22 = 1- c2x2( )x4 exp − a2 + a6( )x2 − b2 + b6( )x4[ ]dx
−∞

∞∫    (A8) 

 

     γ 23 = 1- c2x2( )x6 exp − a2 + a6( )x2 − b2 + b6( )x4[ ]dx
−∞

∞∫    (A9) 

 

      γ 24 = 1- c2x2( )exp − a2 + a6( )x2 − b2 + b6( )x4[ ]dx
−∞

∞∫    (A10) 

 

γ 31 = 1- c4x2 + d4x4( )x2 exp − a4 + a6( )x2 − b4 + b6( )x 4[ ]dx
−∞

∞∫   (A11) 

 

γ 32 = 1- c4x2 + d4x4( )x4 exp − a4 + a6( )x2 − b4 + b6( )x4[ ]dx
−∞

∞∫   (A11) 

 

γ 33 = 1- c4x2 + d4x4( )x6 exp − a4 + a6( )x2 − b4 + b6( )x4[ ]dx
−∞

∞∫   (A12)  

 

γ 34 = 1- c4x2 + d4x4( )exp − a4 + a6( )x2 − b4 + b6( )x4[ ]dx
−∞

∞∫   (A13) 

 

 δ11 = x4 exp − a1 + a7( )x2 − b1 + b7( )x4[ ]dx
−∞

∞∫    (A14) 

 

δ12 = x6 exp − a1 + a7( )x2 − b1 + b7( )x4[ ]dx
−∞

∞∫    (A15) 

 

δ13 = x8 exp − a1 + a7( )x2 − b1 + b7( )x4[ ]dx
−∞

∞∫    (A16) 

 

δ14 = x2 exp − a1 + a7( )x2 − b1 + b7( )x4[ ]dx
−∞

∞∫    (A17) 
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δ21 = 1- c3x2( )x4 exp − a3 + a7( )x2 − b3 + b7( )x4[ ]dx
−∞

∞∫   (A18) 

 

δ22 = 1- c3x2( )x6 exp − a3 + a7( )x2 − b3 + b7( )x4[ ]dx
−∞

∞∫   (A19) 

 

δ23 = 1- c3x2( )x8 exp − a3 + a7( )x2 − b3 + b7( )x4[ ]dx
−∞

∞∫   (A20) 

 

δ24 = 1- c3x2( )x2 exp − a3 + a7( )x2 − b3 + b7( )x4[ ]dx
−∞

∞∫   (A21) 

 

  δ31 = 1- c5x2 + d5x4( )x4 exp − a5 + a7( )x2 − b5 + b7( )x4[ ]dx
−∞

∞∫   (A22) 

 

 δ32 = 1- c5x2 + d5x4( )x6 exp − a5 + a7( )x2 − b5 + b7( )x4[ ]dx
−∞

∞∫   (A23) 

 

 δ33 = 1- c5x2 + d5x4( )x8 exp − a5 + a7( )x2 − b5 + b7( )x4[ ]dx
−∞

∞∫   (A24) 

 

 δ34 = 1- c5x2 + d5x4( )x2 exp − a5 + a7( )x2 − b5 + b7( )x4[ ]dx
−∞

∞∫   (A25) 

 
then we can express them in terms of the 3x3 determinants:  
 

   c6 =

γ14 −γ12 γ13

γ 24 −γ 22 γ 23

γ 34 −γ 32 γ 33

γ11 −γ12 γ13

γ 21 −γ 22 γ 23

γ 31 −γ 32 γ 33

,    d6 =

γ11 γ14 γ13

γ 21 γ 24 γ 23

γ 31 γ 34 γ 33

γ11 −γ12 γ13

γ 21 −γ 22 γ 23

γ 31 −γ 32 γ 33

,     and e6 =

γ11 −γ12 γ14

γ 21 −γ 22 γ 24

γ 31 −γ 32 γ 34

γ11 −γ12 γ13

γ 21 −γ 22 γ 23

γ 31 −γ 32 γ 33

             (A26) 

and  
 

   c7 =

δ14 −δ12 δ13

δ24 −δ22 δ23

δ34 −δ32 δ33

δ11 −δ12 δ13

δ21 −δ22 δ23

δ31 −δ32 δ33

,       d7 =

δ11 δ14 δ13

δ21 δ24 δ23

δ31 δ34 δ33

δ11 −δ12 δ13

δ21 −δ22 δ23

δ31 −δ32 δ33

,      and e7 =

δ11 −δ12 δ14

δ21 −δ22 δ24

δ31 −δ32 δ34

δ11 −δ12 δ13

δ21 −δ22 δ23

δ31 −δ32 δ33

 (A27) 

 
Now we notice that all the coefficients in ψ6  and ψ7  are dependent on the parameters in the previous 

eigenstates and only a6, b6, a7, and b7 have to be calculated from the variational procedures. 
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Abstract 

We applied the variational method to determine the ground and first excited state energies of 

quartic and sextic anharmonic oscillator potentials.  Starting from two sets of trial wave functions, we 

showed that by introducing additional terms, the energy eigenvalues gradually converge to those obtained 

from the Runge-Kutta numerical integration method.  

 

I. Introduction 

In a one-dimensional quantum mechanics bound state problem, we have to solve the time-

independent Schrödinger equation: 

  
−

h2

2m
d2ψ
dx2 + V(x)ψ = Eψ      (1) 

where V(x) is the potential of the system.  In most textbooks, the harmonic oscillator potential 1
2

kx2, 

where k is the force constant of the spring, is used as an example from which eigenvalues and 

eigenfunctions can be obtained analytically in an elegant manner.  But when we extend to the anharmonic 

regions:  that is using quartic (αx4) and sextic (βx6) potentials, where α and β are coupling constants, 
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analytic solutions are practically impossible to attain.  Usually, methods such as the Runge-Kutta 

integration scheme can be used to calculate the bound state eigen-energies and functions, but the results can 

only be tabulated numerically.  However, there are other alternatives to obtain analytical solutions:  the 

variational method, which is simple in principle but sometimes not easy to implement, can be applied to 

many problems of this kind. By reviewing cases in either textbooks or literature, we notice that in order to 

achieve a good result, one must rely on physical intuition to guess an accurate trial wave function. At the 

same time the function must be manageable by sound mathematical skill. In spite of the many triumphant 

cases, such as the helium atom and hydrogen molecule, difficulties in improving the result still exist.  This 

is because one usually has to include many additional terms in the trial wave function to obtain smaller 

corrections that can sometimes make the calculations rather complicated.  In this work, we achieved 

numerical accuracy for the ground and first excited state energies of the anharmonic oscillator potentials 

down to six significant figures by using two different trial wave functions and systematically including 

additional terms. 
II. Theory 

The variational principle used in solving time-independent Schrödinger equation states as 

following:  for a given Hamiltonian Ĥ, the energy expectation value of any trial wave function ψ trial  we 

choose will always be greater than or equal to the true total ground state energyE tot :  

    E tot ≤ ψ trial
ˆ H ψ trial ,        (2) 

where ψ trial  is a trial wave function, when we happen to choose the true wave function (1). In fact, this 

principle can be extended to the excited states as well, as long as the trial wave function is orthogonal to the 

previously determined ground state and excited state wave functions. This point is demonstrated in many 

commonly used Quantum Mechanics textbooks by using an elegant proof that ψtrial  is expressed as a linear 

combination of all the eigenfunctions of Ĥ, which is analogous to that of the Fourier expansion.   

Now let us briefly review the variational procedure: first, we calculate the total energy expectation 

value, which is the sum of potential and kinetic energies.   

E tot = KE + PE         (3) 
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Second, we minimize the total energy to obtain the best set of parameters.  We do this by differentiating the 

total energy with respect to all the variational parameters and simultaneously solve the equations, which 

may be nonlinear.  Then we substitute the optimized parameters back to Eq. (3) to deduce the total energy.  

Finally, a useful way to evaluate the trial wave function is to compare the effective potential defined as:   

  
Veff = E +

h2

2m
d2ψ
dx2

ψ
    (4),  

with the actual potential V(x), hence there will be a perfect match if the trial wave function agrees well 

with the exact solution. 

  In this project we applied the variational principle to two anharmonic potentials: x4 and x6, 

similar study has been carried out before (2), in which different set of trial wave functions were used to 

calculate the ground state and first excited state energies. Some of the values so obtained were accurate to 

within few percent of those computed from using numerical integration schemes. When selecting the trial 

wave functions, it helps to look at the graph, Figure 1. of anharmonic potentials mentioned above and the 

well-known harmonic oscillator potential,   

    

 

Since the solution of the x2 potential is known to be Gaussian-like i.e. e-ax 2
, a natural choice for the steeper 

potential would be e-ax 2
 (Trial Wave Function 1), because it is symmetrical, i.e.ψ(x) = ψ (−x) , more 

localized and decays faster than the Gaussians. 
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As we carried out the standard variational procedure on ground and first excited states of both x4 

and x6 potentials, we obtained results in the neighborhood of 6-13% accuracy of the numerical integration, 

i.e. the Runge-Kutta method (results obtained separately) These results are good enough for demonstration, 

but maximum accuracy can still be reached. 

Based on previous experience we know we can add on more terms to the trial wave function to 

increase the accuracy of the energy eigenvalues.  The simplest way we can do this is to multiply the 

original wave function by a 1−
x
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  term.  This preserves the symmetry, and slightly modifies the 

behavior near the origin.  In Figure 2 it is shown how this correction term slightly modifies the function, 

but only near the center because as x gets larger the exponential will dominate.  

    

Adding just one correction in refines the accuracy down to about 3-6%.  To make further refinements we 

systematically add more terms with increasing order of x, such as:  

        1−
x
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
x
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

4

−
x
d

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

6

+
x
e

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

8

−
x
f

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

10

+
x
g

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

12

−
x
h

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

14

+
x
i

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

16

⋅ ⋅ ⋅           (5) 

where a, b, c…i are variational parameters that we included progressively.  We observed that after the 

fourth term the accuracy is high but the convergence is slow. By the time we reached respectively the 7th 

and 9th term for the x4 and x6 potentials, we match the numerical results down to the 6th significant figure.  

All the above calculations were performed using Maple 9.5 initially.  

Adding more correction terms was an effective way of getting better energy values, but we can 

also pick a more sophisticated trial wave function such as e-ax 2 −bx 4
(Trial Wave Function 2).  This is 

because it merges the feature of the Gaussian with our previous trial wave function.  This gives us better 
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control of the asymptotic behavior with two parameters in the exponent.  Carrying out the variational 

procedures on this trial wave function gives us accuracy of less then  0.1%, but utilizing the second trial 

wave function requires a prior knowledge of the integral (3) and Bessel functions (4), which renders more 

complex  manipulations. The high level of accuracy obtained is because the Gaussian factor e-ax 2
 contains 

most of the correction terms that we added to the first trial wave function, Eq. (5), this can be verified by 

comparing them with the Taylor expansion the Gaussian term. We can still add in more correction terms, as 

we did in the first case, but our initial result is already matched closely.  Therefore, it requires less terms to 

reach similar high precision.  Furthermore, all the above arguments can be applied to the first excited state 

by multiplying an extra factor x in front of the equations (5), because its wave function is antisymmetrical, 

that is ψ(x) = −ψ(−x). 

 

III. Results and Discussion 

In this section, we present in detail the results obtained from the variational method.  In each of the 

following tables 1-4 and figures 3-4, we show the variational results compared with the numerically 

estimated values obtained by using the Runge-Kutta numerical integration method tabulated in Ref. (2).  As 

we can see the initial result of the first trial wave function is barely acceptable, but after including just one 

parameter the level of accuracy doubles.  When we include 6-7 coefficients, the result converges to the 

numerical values.  The second trial wave function started with satisfactory accuracy, when 4 more 

coefficients are added, the result matches the numbers precisely.  Using the updated Maple 10 we 

performed all the analytical and numerical calculations.  When the number of variational parameters is 

small, such as less than 5 to 6, we obtained the answers very quickly, but as we included more parameters 

in the trial wave functions, the calculations became lengthy, and we had to set the initial values near the 

previous results, nevertheless the improvement is minute.  Therefore, we believe our work reached the 

current limit of the multi-dimensional optimization programs, and it is necessary to increase their capability 

to improve the accuracy. 
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This is also shown graphically in figure 3. 
 
 
 
 
This is also shown graphically in figure 3. 
 
 
 

   
4x Ground State 

 

Numerical result: 1.0603621 
  

Trial Function 1  
# of Coefficients Energy Value % Discrepancy

1 1.2016110 13.32% 
2 1.1213082 5.75% 
7 1.0603621 0.00% 

Trial Function 2  
# of Coefficients Energy Value % Discrepancy

2 1.0604498 0.00827% 
3 1.0603639 0.000076% 
6 1.0603621 0.00% 

Table 1 

   
4x First Excited State 

 

Numerical result: 3.7996730  
   

Trial Function 1   
# of Coefficients Energy Value % Discrepancy

1 4.1063870 8.07% 
2 3.9880590 4.96% 
8 3.7996730 0.00% 

Trial Function 2   
# of Coefficients Energy Value % Discrepancy

2 3.7998168 0.00379% 
3 3.7996747 0.000045% 
6 3.7996730 0.00% 

Table 2 

   
6x Ground State 

 

Numerical result:1.1448025 
  

Trial Function 1  
# of Coefficients Energy Value % Discrepancy

1 1.2581373 9.89% 
2 1.1818932 3.24% 
9 1.1448025 0.00% 

Trial Function 2  
# of Coefficients Energy Value % Discrepancy

2 1.1451929 .034% 
3 1.1449384 0.0119% 
6 1.1448025 0.00% 

Table 3 

   
6x First Excited State 

Numerical result: 4.3385987 

Trial Function 1
# of Coefficients Energy Value % Discrepancy

1 4.5889291 5.97% 
2 4.4687589 3.00% 
9 4.3385990 0.000% 

Trial Function 2
# of Coefficients Energy % Discrepancy

2 4.3394151 0.0188% 
3 4.3388517 0.00583% 
6 4.3385988 0.00% 

Table 4 
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Figure 3. In the case of the x4 potential, we show the systematic convergence for the ground and first 
excited state energies. Blue and green are the energies calculated from the first and second trial wave 
functions, respectively. Red line is the numerical solution. 
 
 
 

 
 
 
 
Figure 4. In the case of the x6 potential, we show the systematic convergence for the ground and first 
excited state energies. Blue and green are the energies calculated from the first and second trial wave 
functions, respectively. Red line is the numerical solution. 
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Another way to reveal the systematic improvement of the trial wave functions is to compare the 

effective potential Veff , Eq. 4, and the real potential.  As we can see in the following figures, Figure 5-6, 

these two potentials coincide with each other when the variational results approached almost precisely to 

that obtained from the numerical method. 

 

Figure 5. In the case of the x4 potential, we show how the effective potential evolves as we add more 
correction terms. The first plot is for one variational parameter and last one is when the number of 
parameters is increased to nine.  The effective potential is in red, true potential is in blue, and green curve is 
their difference. 
 
 

 
Figure 6. In the case of the x6 potential, we show how the effective potential evolves as we add more 
correction terms. The first plot is for one variational parameter and last one is when the number of 
parameters is increased to nine.  The effective potential is in red, true potential is in blue, and green curve is 
their difference. 
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Finally, a remark is in order: when we were carrying out the numerical calculation, for convenience we set 

2m, the Planck’s constant   h , and coupling constants, α and β, of the potential in Eq. (1) equal to one.  In 

fact, using a scale transformation we can derive a dimensionless differential equation: that is converting Eq. 

(1) to either 

− d2ψ
dz2 + z4ψ = εψ                   (6), 

by setting z =
  

h2

2mα

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
6

x  and  ε = 
  

2m
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2
3 E

α
1

3
, or 

             − d2ψ
dz2 + z6ψ = εψ                                   (7), 

by setting z =
  

h2

2mβ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
8

x  and  ε = 

  

2m
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

3
4 E

β
1

4
. 

IV. Conclusion 

 We showed that when using the variational method, systematic convergence to the numerical 

values is achieved by adding more variational parameters into the trial wave functions.  We found that, 

among the two set of trial wave functions we introduced, the more sophisticated one provides more 

accurate eigenvalues.  However, as we increase the number of parameters in both trial wave functions, they 

both reached practically the same values as that obtained from the Runge-Kutta numerical integration 

schemes, namely accurate to the sixth significant figures.  When carrying out this project, we used the 

upgraded Maple 10 packages intensively and found that it is an effective and valuable tool in manipulating 

complex formulas and minimizing the parameters of our trial wave functions.   
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VI. Appendix 

In the process of applying the trial wave function II, we encountered the following integral:  

exp(−μ
0

∞

∫ x4 −νx2)dx  ,       (A1) 

where μ and ν are real and positive constants. This can be found in the standard mathematical handbook 

such as Table of Integrals, Series, and Products (3 and 4). But the detailed derivation is not provided in 

many other mathematical tables, therefore we shall bridge the gap here in the Appendix. 

To begin, we make use of two clever identities: first a relations hyper-trigonometric function, 

cosh(4θ) = 8sinh4 (θ) + 8sinh2(θ) +1   (A2) 

Then we use the integral presentation of the modified Bessel function of fractional order σ, Kσ z( ) (4): 

exp −zcosh(θ)[ ]
0

∞

∫ cosh(σθ)dθ ≡ Kσ (z)  (A3) 

Now consider the substitution ( )θ
μ
ν sinh=x , then the exponent of the integrand (A.1) becomes: 

μx4 + νx2 =
ν 2

μ
sinh4 (θ) +

ν 2

μ
sinh2(θ)  (A4) 

Using (A2), we have the following result: 

μx4 + νx2 =
ν 2

8μ
cosh(4θ) −

ν 2

8μ
  (A5) 

Then integral (A1) can be expressed as following  

exp(−μx4 −νx2

0

∞

∫ )dx = exp ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp - ν 2

8μ
cosh(4θ)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0

∞

∫ ν
μ

cosh(θ)dθ   (A6) 

Making use of identity (A3), then we get the known result in the handbook, 

exp(−μx4 −νx2

0

∞

∫ )dx = 1
4

ν
μ

exp ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ K 1

4

ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (A7) 
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Furthermore, applyingA6 and the recurrence relation of Bessel functions,  

d
dz

Kσ (z) = Kσ +1(z) +
σ
z

Kσ (z)    (A8) 

we can evaluate much more complicated integrals like: 

x2n

0

∞

∫ exp −μx4 −νx2( )dx    (A9) 

where n is an integer.  For example: 

x2

0

∞

∫ exp(−μx4 −νx2)dx = - ∂
∂ν

exp(−μx4 −νx2)
0

∞

∫ dx 

=
1

16
ν 3

μ3 K 5
4

ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

1
4

1
μν

+
1

16
ν 3

μ3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ K 1

4

ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
exp ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    (A10) 

and also:  x4

0

∞

∫ exp(−μx4 −νx2)dx = - ∂
∂μ

exp(−μx4 −νx2)
0

∞

∫ dx 

= −
1
32

ν 5

μ5 K 5
4

ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

3
16

ν
μ3 +

1
32

ν 5

μ5

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ K 1

4

ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
exp ν 2

8μ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (A11) 

The rest, when n > 2, can be performed in a similar manner. 

 Our Maple work sheets are available for the interested readers, please send request to the attached e-mail 

addresses. 
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