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MAGNETIZATION OF STRAINED COBALT FILMS AND THE
MAGNETO-OPTIC KERR EFFECT

Elizabeth Mayo
Department of Physics
West Virginia University
Morgantown, WV 26506-6315
received June 10, 1997

ABSTRACT
Using the magneto-optic Kerr effect, it was possible to detect changes in the shape of magnetic hyster-
esis loops due to stress applied to ferromagnetic polycrystalline cobalt thin films. When stress was
applied to cobalt thin films , the remanent magnetization increased perpendicular to the direction of the
stress. This result is consistent with other studies of the effect of stress applied to bulk polycrystalline

cobalt.

INTRODUCTION
The surface magneto-optic Kerr effect (SMOKE) was first
used in 1985 to measure the magnetization of Fe films
deposited on gold. I It since has become an important tool
in this area of study. It has been used to search for

magnetic ordering, to identify dominant magnetic anisotro-

pies and to characterize the critical magnetization expo-
nent at two dimensional phase transitions. !

The surface magneto-optic Kerr effect occurs when
linearly polarized light is reflected from the surface of a
magnetized medium. The light decomposes into left and
right circularly polarized modes. The two modes have
different indices of refraction, travel with different
velocities and attenuate differently. When the two modes
reflect from the material, they recombine to yield a rotated
polarization and ellipticity. 2 The magneto-optic interac-
tion causes the electric field vector of the light to rotate.
The induced response has two components: an inphase
part that causes the rotation and an out-of-phase part that
causes the ellipticity.

When the magnetization of the material is reversed, the

Elizabeth is a senior physics major at West Virginia
University. This research was begun during the spring
semester of her junior year as an advanced physics
laboratory project and has continued throughout her
senior year. The results were presented at the March
meeting of the American Physical Society in a poster
session. Currently she is looking forward to attending
graduate school in astronomy.

magneto-optic rotation and ellipticity reverse sign. This
can be achieved in a ferromagnetic sample by reversing
the external magnetizing field. The change in polarization
is measured by measuring the intensity of the reflected
beam after it passes through a linear polarizing analyzer.
The intensity of the transmitted signal is:

I =1, cos¥(¢) , (1)
where ¢ is the angle between the polarization of the beam
and the axis of the analyzer and /,, is the incident intensity
of the reflected beam. Differentiating Equation 1 with
respect to the angle ¢ gives:

4 = sin(20) . (2)
Hence, the Kerr signal, d/, is proportional to the change in
the rotation of the polarization of the light, d. The signal
produced by the SMOKE during the reversal of the
magnetic field is proportional to the sample’s magnetiza-
tion. 2

THE EXPERIMENT
This experiment was designed to observe the effects of
stress on a ferromagnetic sample using SMOKE. A
magnetization curve for a sample was generated using the
SMOKE technique. The direction of the stress was varied
and the magnetization curves compared with those of the
unstressed samples. This allowed us to observe how the
stress affected the magnetization of the sample.

Sample preparation and characterization

All films in this study were prepared by magnetron
sputtering on mica substrates at an argon sputtering
pressure of 3.0 mTorr in a chamber with a base pressure of
1 uTorr. The sample holder, outfitted with a heater, was
centered about four sputtering guns. Mica was chosen as
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Figure 1
X-ray intensity vs 206 for a pure mica substrate and the Co
thin films. The peaks represent Bragg diffraction from
atomic planes. Ty is the growth temperature for the
samples: A (Ts=room temperature), B (Ts = 132 C).

the substrate due to its flexibility. The ferromagnetic metal
chosen for this study was cobalt. Two samples were
produced, one at room temperature and one at 132 C.

The films were characterized by large angle Cu K¢ (A =
0.15418 nm) X-ray diffraction and small angle X-ray
reflectivity using a rotating anode diffractometer equipped
with a four-circle goniometer. Large angle X-ray diffrac-
lion is sensitive to interplanar lattice spacings consistent
with Bragg’s law:

2dsin(®)=nh , 3)
where d is the lattice spacing between the planes, 0 is the
angle of incidence with respect to the atomic planes and A
is the X-ray wavelength. Small angle reflectivity scans
were performed to characterize the film’s surface rough
and thickness. Small angle X-ray reflectivity is sensitive
to these properties due to the X-ray interference between
the top and bottom surfaces of the film. The film thick-
ness was calculated from the minima of the reflectivity
scans using the relationship:

sin'(0) = (28] +25 . @)

where D is the film thickness, d is the real part of the index
of refraction. 3

Figure 1 shows the large angle X-ray diffraction scans of
the mica substrate (Figure la), cobalt sample-A (Figure
Ib) and cobalt sample-B (Figure 1¢). For each sample the
Bragg peaks were compared to those of the mica substrate.
Cobalt has a face centered cubic (fec) crystal structure.
Cobalt sample-A, grown at room temperature, did not
exhibit any Bragg peaks expected from a single fcc crystal.
Its scan matched that of the mica substrate quite well.

This implies that sample-A did not exhibit growth along a
particular crystallographic direction and, therefore, is
likely to be polycrystalline (made up of many small
randomly oriented crystals).

Cobalt sample-B, grown at 132 C, showed a Bragg peak
corresponding to scattering by the {002} planes in Co. (20
=51.8 °). There were also other peaks which did not
correspond to cobalt or mica. These could have been due
to the cobalt film forming an alloy at the surface of the
substrate or the heating process changing the crystal
structure of the mica substrate. Sample-B, therefore, is a
fce cobalt film oriented along the [001] direction.
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Figure 2
X-ray intensity vs 20 for Co samples. Peaks represent
interference between X-rays from the top and bottom of the
films. Ty is the growth temperature for the samples: A
(Ts=room temperature), B(Ts = 132 C). The sharp peak
near 20 = 4.4° is due to a Bragg reflection from an atomic
plane in mica.
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The small angle X-ray diffraction results are shown in
Figure 2. Sample-A shows very few peaks. In comparison,
sample-B has many high intensity peaks. From this, one
concludes that sample B has a smoother film surface than
sample A. The film thickness were calculated using
Equation 2. Sample-A, grown at room temperature was
approximately 10.4 nm thick, while sample-B, grown at
132 C, was 11.1 nm thick. The estimate for the thickness
of Sample-B was more accurate than that for Sample-A
due to the greater number of minima present in the scan.

Kerr Rotation Measurement
A semiconductor laser (A = 670 nm) was used as the light
source. The incident light was linearly polarized by a
polarizer in the plane of incidence. The sample was placed
between the poles of an electromagnet, producing the
external magnetic field, H. The light reflected from the
sample passed through an analyzing polarizer set 2° from
extinction. The Kerr signal was detected by a photomulti-
plier tube (PMT). The current output of the PMT was
amplified and converted into a voltage. To reduce the
noise to signal ratio, it was necessary to focus the beam to
a point onto both the sample and the PMT. We used a
quarter wave plate to remove some of the ellipticity
induced by the birefringence of the mica substrate.

The bipolar power supply of the magnet was computer
controlled by a program which regulated the current of the
magnet. The program also recorded the output of the PMT
and the output of a Gauss meter placed between the poles
of the magnet. Figure 3 is a schematic diagram of the
experimental setup.

To make sure that the Kerr signal loop was observed only
in magnetic material, we measured the magnetization loop
of a nonmagnetic Re thin film and compared it with the
magnetization loop of a known ferromagnetic Fe sample.
Both films were grown on a sapphire substrate. Figure 4 is
a plot of the ratio of the measured intensity with magnetic
field H, I(H), to the measured intensity at saturation, /s for
the Re sample. The magnetization loop showed no

Smplem "
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1/4 Wave Kerr Effect
Plate Gauss Experimental
Set-up
Analyzin
Pola
Lens izer
Semiconductor Laser
C u
P P
Figure 3

Schematic diagram of the Kerr rotation experimental
setup.
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Figure 4
Normalized (to saturation) light intensity vs. magnetic
field, H, for a nonmagnetic Re thin film.

magnetization curve, while the results from the Fe sample,
shown in Figure 5, showed a definite magnetization curve.

Effects of Stress on the magnetization loops

Each of the cobalt samples first placed on a flat sample
holder and were measured in an unstressed state. A stress
was then induced on the samples by mounting them on the
curved surface of a cylindrical sample holder as shown in
Figure 6. The stress, o, on the samples is given by 4:

1.0

Fe Film (magnetic)

I(H)/ls

-0.2 0.1

0.0 0.0
H(kOe)
Figure 5

Normalized (to saturation) light intensity vs Magnetic
field, H, for a ferromagnetic Fe thin film.

0.2
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Unstrained Mounting:

® @._ Sample

Strained Mountings: o=strain

Cylindrical Sample

Figure 6
Diagram showing the sample stress direction with respect
to the magnetic field, H. The strained mounting diagram
shows samples stressed along the long (a) and short (b)
directions. The cylinder could be rotated about the
surface of the film to measure the Kerr signal with H
perpendicular or parallel to the stress ©.

el

where Y is Young’s modulus of Co (200 x 109 Pa) 5, R is
the radius of the sample holder (1.905 cm) and y is the
thickness of the substrate (neglecting the film thickness
(0.025mm). The stress applied to the sample was

1.31 x 106 Pa (13.4 kg/mm2).

The films were rectangular in shape, with short and long

axes perpendicular to each other. For each sample, six

magnetization loops were measured:

a) (unstressed) flat with H parallel and perpendicular to
the short sample axis.

b) stressed along the short sample axis, with H parallel
and perpendicular to the short sample axis.

c¢) Stressed along the long sample axis, with H parallel
and perpendicular to the short sample axis.

RESULTS
Figures 7 and 8 show the changes in the light intensity (the
Kerr signal), normalized to the saturation value, of
samples A and B in the different configurations. For both
samples in the unstressed state, the remanent magnetiza-
tion (magnetization at H = 0) was smaller in one direction
than the other. The remanent magnetization of the loops
was different when H was applied parallel and perpendicu-
lar to the short axis of the sample.

When the samples were stressed, the magnetization curves
changed. Both samples exhibited a change in the rema-
nent magnetization of the loop with the applied strain.
This is shown in Figures 7 and 8 by the increased rema-
nent magnetization of the magnetic hysteresis curves when
the stress is applied perpendicular to H and the decrease in
remanent magnetizations of the curves when the stress is
applied parallel to H.

This effect can be quantified by calculating the normalized
remanent magnetization. The normalized remanent
magnetization, (Mg/Ms) , is the ratio of the magnetization

I(H),

I(H)A,

I(H),

H(kOe)

Figure 7
Normalized (to saturation) light intensity vs magnetic

field, H, for Co sample A. The circles represent data

measured with H perpendicular to the short axis of the
rectangular sample and the triangles represent data
measured with H parallel to the short axis of the
rectangular sample. Graph (a) is data measured in the
unstressed configuration. In graphs (b) and (c), the
shaded figures represent data obtained with the stress
applied perpendicular to H and the unshaded figures
represent data obtained with the stress applied parallel to
the magnetic field.
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at H=0, My ,to the magnetization at saturation, Ms. We
assume that:

M, _I(H=0)

M= T ©
Table 1 shows the values of the normalized remanent
magnetization for both samples A and B. The changes in
the Mg/Ms values reflect the changes in the shapes of the
magnetization loops for each sample.

These results indicate that stress induces an increase in the

I(H)A,

I(H),

I(H),

H(kOe)

Figure 8
Normalized (to saturation) light intensity vs magnetic
field, H, for Co sample B. The circles represent data
measured with H perpendicular to the short axis of the
rectangular sample and the triangles represent data
measured with H parallel to the short axis of the
rectangular sample. Graph (a) is data measured in the
unstressed configuration. In graphs (b) and (c), the
shaded figures represent data obtained with the stress
applied perpendicular to H and the unshaded figures
represent data obtained with the stress applied parallel to
the magnetic field.

Stress Direction Mgr/Ms Sample
Unstressed olLH o H
H Il to short axis 0.33 0.72 020 A
H . to short axis 0.89 1.00 065 A
H Il to short axis 0.81 0.87 053| B
H L to short axis 0.40 0.94 040| B
Table 1

Normalized remanent magnetization (Mg/Ms) for each Co
sample, showing the effect of the applied stress, o, on the
magnetization of the sample. The Kerr signal was
measured with H either parallel or perpendicular to the
short axis of the rectangular films. H was pointing along
the surface of the film in both cases. The stressed sample
was placed in the magnetic field with the direction of the
stress parallel and perpendicular to the magnetic field.

remanent magnetization in cobalt films perpendicular to
the direction of the strain. The results for both samples
studied are similar to each other, despite the differences in
their surface morphology and crystallinity. Our results
agree with those found by others who have studied the
effect of stress applied to bulk polycrystalline Co. 5
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INVESTIGATION OF CHANGES IN SURFACE MORPHOLOGY
OF RUTILE TITANIUM DIOXIDE DURING REDUCTION

Brian Bradford and John Kassay
Department of Physics and Engineering
Ft. Lewis College

Durango, CO 81301
received Dec 8, 1997

ABSTRACT

Single crystal rutile (a tetragonal structure) titanium dioxide (TiOz) samples are routinely reduced at
high temperature in an oxygen poor environment to make them semiconducting for applications in
photocatalysis. Such reduction is not generally thought to drastically change the surface structure of
TiO,. As a consequence, reduced samples are often used for studies of the properties of single crystal
surfaces. We examined the surface features of rutile TiO» before and after reduction at approximately
500 C using atomic force microscopy. Significant surface roughening and possible facet formation are

seen on both the (110) and (001) faces of TiO; crystals after reduction. These results suggest that
reduced surfaces are no longer single crystal in nature.

INTRODUCTION
Titanium dioxide, TiO3 , is most widely used around the
world as a pigment in white paint, and is even used as the
whitener in nondairy creamer. In recent years, it has been
investigated as a material that uses light energy to catalyze
chemical reactions, a photocatalyst. It could be used as a
photocatalyst to harness solar energy, trigger organic
synthesis reactions and to purify water and air. 1.2

TiO; is a structure with three titanium atoms around each
oxygen atom and six oxygen atoms around each titanium
atom. There are three different crystal structures that have

Brian is a junior chemical engineering major at Fort
Lewis College. He plans to transfer to Colorado
School of Mines to complete his B.Sc. and M.Sc. in the
fall of 1998. This research was completed as part of a
summer research internship sponsored by the
Colorado Alliance for Minority Participation. Brian’s
spare time is devoted to studying, playing basketball
and spending time with his family.

John is a junior physics major at Fort Lewis College.
He is simultaneously finishing his B.Sc. and running a
successful cabinet shop. He did this research as part
of a summer research internship sponsored by the
Colorado Space Grant Consortium. In his spare time,
John likes to rock climb and hike in the Colorado
mountains.

this stoichiometry: rutile, anatase and brookite. The rutile
form, which is the most stable, has a tetragonal structure. 3
TiO; in its rutile form is very non-reactive and nonconduc-
tive. When a TiO; sample is reduced by placing the
crystal in an oxygen deprived environment at 500 C for
approximately 4 hours, the oxygen atoms are driven out of
the TiO, lattice, leaving behind defects that increase
conductivity. The reduced sample is an n-type semicon-
ductor. The band gap of reduced rutile TiO; is 3.1 eV,
making it capable of breaking down many organic
substances when illuminated by ultra violet light. 5 When
UV light is shined on TiO3, an electron is excited from the
valence band across the band gap and into the conduction
band. This electron is then available to induce a reduction
process that breaks down organic compounds.

Reduced TiO; samples are used as “single crystal”
surfaces to study structure and properties of the surfaces.
It is possible to select TiO; surfaces that have different
atomic orientation and, thus, different properties. Such
surfaces are obtained by cutting a crystal of TiO; along
one of several planes to expose the desired orientation.
We chose to study crystals that had either (110) or (001)
crystal faces exposed. Surfaces such as this can facet, a
process where once crystal face ‘kinks’ or re-orders to
form another orientation. Usually it takes high tempera-
tures to induce faceting. For our surfaces, some faceting
has been observed, but at much higher temperatures 6.7
than we used to reduce our samples. Thus, our samples
are generally assumed to be single crystal.
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Experimental set up for reduction of TiO; samples at
500 C in an oxygen poor environment.

THE EXPERIMENT
We began this research project by investigating the ability
of TiO, to decompose water for applications in the solar
evolution of H; gas, which can be used as a fuel and for
direct production of electricity. The study of the surface
morphology of the crystals, what we are reporting in this
paper, arose as a side light to the intended purpose of this
research.

When purchased, the TiO; crystal was transparent yellow-
ish in appearance. One surface of the crystal was polished
so that it is optically flat, variations over the entire surface

do not exceed about 100 nm. Using an Atomic Force
Microscope (AFM), we took images before and after
reduction to see if the reduction produced any changes in
the surface morphology of the crystal. A dramatic change
was observed, which may be surface faceting, a result that
has not yet been reported in samples reduced at 500 C.

Three single crystal wafers of rutile TiO, were used in this
study, two cut along the (110) plane and one along the
(001) plane. The samples measured 10 mm x 10 mm x 0.5
mm and were polished to optical flatness on one side.
Each sample was imaged using the AFM before it was
reduced. Several spots on each sample were examined to
ensure that the surfaces were uniform.

Each sample was reduced in a tube furnace. Industrial
grade hydrogen gas was passed at 10 p.s.i. through a Vycor
tube, a type of glass tube made for use in extremely high
temperatures, that was externally heated between 500 C
and 550 C. The set up is shown in Figure 1. A calibrated
chromel-alumel thermocouple attached to the sample
holder measured the approximate sample temperature.

The heating process was carried out until the transparent
yellowish appearance of TiO turned to a clear blue color,
indicating that the sample was reduced from its insulating
state to a semiconducting state. The reduced samples were
again analyzed using the AFM, with images taken at
various locations across the sample.

To further explore how morphological changes occur at
this low reducing temperature, one of
the (110) samples was only partially
reduced. This gave insight as to
whether the observed surface
features can be attributed to the
actual reduction process or whether

A
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S0 Height Profie [A]
400 2
200 @ A\
00 . gR
,)‘! \'k\
°0 02 s
Figure 2

TiO; (110) sample as received. The line profile shows the height of the
small features, likely dust. The RMS roughness is 6.2 A

A .

Height Profile [A]

—~ they are the result of some other
r "\\ process that occurs curing heating.
/ .
— DATA PRESENTATION and
Bem DISCUSSION

Figure 2 shows surface scan of a
(110) sample before reduction. It has
an average root mean square (RMS)
roughness of 6.2 A. The sample was
then reduced for about 4 hours at
520 C with hydrogen gas flowing at
10 p.s.i. until it appeared transparent
and bluish. Figure 3 shows the AFM
image of this surface. Noticeable
surfaces protrusions, likely facets,
had formed. The mechanism that
causes the formation of these features

0 02 04 06

0.8um 0 02 04

Figure 3

TiO; sample after reduction. The large surface features are now

evident. The RMS roughness is now 84 A

is presently not known. We specu-
late that the features are facets or
regions of new crystal growth
because of the regular shapes and
sizes of these features. These
features caused the RMS surface
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Figure 4

Second TiO; (110) sample as received. This sample is slightly flatter than

the first, with a RMS roughness is 4.0 A.
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Figure 5

Second TiO; (110) sample. This image is of a region that is only
partially reduced. The RMS roughness is 7.6 A, but no surface features

are evident.
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Figure 6

Second TiO; (110) sample. This imcjfe is of a region that is completely

reduced. The RMS roughness is 84

with surface features evident.
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Surface scan of TiO; (001) sample as received. The RMS roughness is
34A
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Figure 8

Surface scan of TiO; (001) sample after reduction. The RMS roughness
is 75 A with surface features present. The features have different shape
and density from those seen on the TiO; (110) sample.

roughness to increase to 84 A.

To check that these surface features
were reproducible, a second sample
with the (110) orientation was
studied. Figure 4 shows the sample
before reduction, with an RMS
roughness of 4.0 A. During reduction,
the hydrogen gas was pressure was
increased to 15 p.s.i. in an attempt to
speed up the process. This higher
pressure actually slowed down the
reduction. After 4 hours, the sample
still appeared to be some what yellow
with some bluish color, indicating
that the reduction was not complete.
The surface of the sample was again
imaged using the AFM. Figure 5 is
an image of a light blue area which
was only partially reduced. No
noticeable surface features had
formed. The average RMS roughness
of the surface, 7.6 A, indicated that
the surface was a little rougher than
the unheated surface, though this
could be due just to variations in
roughness across the sample. Figure
6, the image of a darker blue or fully
reduced spot, shows some protru-
sions. The average RMS roughness
of this area was 84 A, the same
roughness of the first (110) sample
that was fully reduced. If some
aspect of the heat treatment, such as a
chemical reaction with hydrogen,
were causing the features to form,
they it should be seen uniformly
across the sample. The process of
reduction of the bulk sample creates
the features on the sample surface.

The (001) orientation sample was
studied to make certain that the
“faceting” observed was not present
in the (110) samples. Figure 7 shows
the before reduction surface, showing
an average roughness of 3.4 A. The
reduction process for this sample took
only 3.25 hours with hydrogen gas
flowing at about 8 psi. Figure 8 is the
ATM image of the fully reduced
sample. It shows many surface
features and has an average RMS
roughness of 75 A. The (001) surface
features are of different shape, size
and density than those seen in the 110
samples. This supports faceting or
crystal growth as being responsible
for the observed features.
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Our results suggest that the features we saw likely would
occur on samples reduced even in a ultra high vacuum, a
technique common in preparing samples for study of the
properties of single crystal TiO; . We found that after
reduction, the TiO; is no longer a single crystal. Conse-
quently, reduced samples should not be used to study
structure and properties of single crystal TiO; surfaces.
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ABSTRACT
In this work, we use three different types of trial wave functions: straight edged functions (triangular
and trapezoidal); Lorentzian type; and Gaussian type functions to calculate the ground state and first
excited state energies of the octic potential. We demonstrate that when using the variational method to
study quantum mechanical bound state problems, we have the advantage of probing the characteristics
of the problem without knowing the exact solution,

INTRODUCTION many different methods are used to solve the problem.
For most quantum mechanical problems, exact analytical One of them is the variational method where solutions are
solutions are difficult to obtain. When this is the case, constructed by making a “guess” based on the characteris-
tics of the problem. For example, one may rely on the
The project started when Marcel and Dave took asymptotic behavior and the symmetry of the problem.
quantum mechanics in the spring of 1995. Both Because of the necessity of choosing a good trial solution,
participated in a Department of Energy Science and this method depends heavily on physical insight and
Engineering Research Semester (SERS) at the Oak mathematical ability. It has the advantage, however, of
Ridge National Laboratory. Dave visited the plasma providing an analytical form for the wave function which
division during the summer of 1995 and Marcel spent can be used in a variety of situations. 1.2
& months in the material science division in 1996.
Our visits were so enjoyable that we decided to pursue In most quantum mechanical bound-state problems, one
careers in the areas of applied sciences. starts with the confinement potentials expanded in terms of
a power series in x, where x is the displacement or a
Dave left UNO at his senior year and went to the generalized coordinate from the equilibrium position. The
Colorado School of Mines in Golden to ger an simplest problem involves taking the quadratic term,
Engineering Physics degree. He will graduate in the resulting in the well known and thoroughly studied
summer of 1998. The Navy's Nuclear Power school at harmonic oscillator. Mathematical difficulty arises when
Charleston, SC already has offered him an instructor higher powers, such as the quartic and sextic terms are
posiiion. He will be able to teach there and proceed included. Many systematic studies using perturbational
with a Ph.D. degree in theoretical physics. Outside of and variational methods have been done for the quartic and
class, Dave can be found either working in the sextic anharmonic oscillators. 1.2.3 When the variational
optoelectronics division of NIST at Boulder, hiking the method 1.2 was used, several sets of trial wave forms were
hills of Golden or practicing piano. utilized to study the characteristics of the ground state and
first excited state. The results show that guessing the
Marcel finished his senior project and graduated in correct asymptotic behavior for the trial wave functions
the summer of 1997. He received a research will lead to more reliable results.  We use a similar
assistantship from the Materials Science Department approach to investigate the scale-free octic potential well,
of the University of lllinois -Urbana-Champaign. whose quantum mechanical Hamiltonian is:
Currently he is examining the surface/step interactions N I
of the (001) and (111) faces of TiN grown by reactive H=- e +a4 (1
magnetron sputtering using in situ STM and other Bt
surface characterization techniques. He is still taking e
courses and preparing for the qualifying exam. His . Why the Variational Method 4 works )
free time is spent at home and playing volleyball. Instead of knowing the exact wave function ¥, of the
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Hamiltonian, A , we use an approximation ¥ which can
be expressed as the linear combination of y,, the nth exact
wave function of the Hamiltonian. Based on the principle
of superposition:
¥ =El Ca Wy - (2)
Since Wy, W and y,, are all normalized:
2 e[ =1 3)

Using ¥ to calculate the expectation value, E, of the
Hamiltonian, A , we obtain:

2
C,

B 5 ()

Cn

E:f"\lfﬁtpdhil

Since the exact ground state energy, E,,, is less than the
energy of the higher states, Equation 4 becomes for all n:

E> )_:I ¢, E, . (5)
Substituting Equation 3 into Equation 5 gives:
EZE, . (6)

This result shows that the energy, E, given by the trial
wave function, ‘P, is always greater than the exact energy,
E,.

A similar proof can be extended to the first excited state.
As long as the trial wave function, ¥, for the first excited
state is orthogonal to the previously determined ¥, the
expectation value for E) from V| is always greater than
the exact value. This proof can be carried out to all
excited states, but it is too tedious for higher excited states.
Therefore, we restrict ourselves to the first two bound
slates.

To analyze how well the trial wave function was con-
structed, we write the trial wave function, ¥, as the sum of
the exact wave function plus some small error:

VY=Y,+d¥ . (7
Writing Equation 2 in integral form and substituting
Equation 7 into it and solving for ¢,

— o

¢, = ”q;;\ydhr v, (¥, +8¥)av.  (8)

Since the ground state wave function, g is orthogonal to
all the excited state wave functions, y,,, we have:

Jm VW, dV =0 . ©)

Therefore:

= J-:: v, [5‘1’) dv | forn>0 (10)

If 8 is small, the trial wave function is a good approxi-
mation. Based on Equation 10, all ¢,’s other than ¢q will
also be small. 5 Equation 5 then assures that E will be
very close to Ep.

By studying the familiar solutions to the harmonic

oscillator protlem, we deduce several essential features
that are useful for constructing the trial wave functions for
this problem. First, the bound state solutions are always
localized around the origin, they decay rapidly when

x ->*eo, Second, there are two distinct groups of solu-
tions, one that is symmetrical with respect to x =0,
{¥(-x) =¥(x) }, and the other that is antisymmetric,
{W(-x) =-¥(x)}. These two groups of wave functions are
orthogonal to each other. We expect similar properties to
continue for the solutions for higher order symmetrical
potentials.

CALCULATION AND DISCUSSION
Schrodinger’s equation for our problem is:

2
-%uﬂp:gw. (11)

For the first trial wave function, we use a single triangle
wave function for the ground state (shown in Figure 1):

0 ]xl?l
V) ={ -a(-A+x) A2x20 %,  (12)
alA+x) 0=2x2-A

and a double triangle wave function, shown in Figure 2,
for the first excited state:

0 | ]_a
¥, (x) = “_"I;j) :;_T xz‘_AA (13)
Yx+a) -Azx2-a
where continuity at x = 4 requires:
A =%, (14)

where o, yand B are the slopes and @ and A the x-axis
intercepts of the edges of the triangles. Using the trail
wave functions, Equations 12 and 13, we obtained the
analytical expressions for the ground state and first excited
state expectation values, which depend on the parameters
o, B, v, A, and a. Then, the energies can be optimized by
using the International Mathematical Subroutine Library
(IMSL) package. We utilized the routine UMINF in the
optimization chapter 6 to find the minima of the total
energies and, at the same time, all of the optimal values of
the parameters.

Figures 1 and 2 show that ¥ is symmetrical with respect
to the x = 0 line while ¥, is antisymmetric. This simple
symmelry property makes V¢ orthogonal to V.

There are two advantages in using these triangular wave
functions. First, they mimic the localized bound state
wave functions, e.g. they resemble the ground and first
excited wave functions of the harmonic oscillator. Second,
they are quite easy to integrate. This is especially true for
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the kinetic energy term, because it relates to the delta
function. 1.2 After normalization, the expectation values
can be calculated swiftly. The results depend only on one
(for W) or two (for ‘¥'|) parameters.

We found ground a ground state energy, Ep= 1.43 and a
first excited state energy, E;=5.49. Exact solutions to this
problem can be obtained using a Runge-Kutta numerical
integration program (Ep = 1.23 and Ej=4.76). Thisisa
discrepancy of 16% and 15% respectively.

These results are good for such crude approximate wave
functions. One problem that can be fixed the wave is the
unphysical shape at the cusps. We can truncate the cusps
and turn Equations 12 and 13 into the trapezoidal shapes.
For the ground state (shown in Figure 1) :

0 |x|ZB
3 a
(A—B)m BZIZG.
Fox) = a o= x2 -0 (15)
a
(X+B}'(-_T+—B')‘ —ozxz2-f
For the first excited state (shown in Figure 2):
0 li2p )
-Y(x—a) az2x2B
>x>
¥, (x) = ‘ Brxza A (16)
-Bx A2x2-A
-b -Az2x2-B
-Yx+a) -Bzx2-a
where:
A=ﬁ-. (17)
and:
B=a-% . (18)

The three optimization constants, ¢, § and y are found
using the same techniques as before. The expectation
values found for the trapezoidal trial wave functions are
E¢p=1.33 and E| = 1.12. The corrections improved the
results, the discrepancies between the this technique and
the Runge-Kutta results are 9.6% and 7.5%.

These examples show that the triangular wave functions
are ‘unphysical’ at the cusps and that this discrepancy can
partially be corrected by using the trapezoidal functions.
However, the turning points of the wave functions are still
not smooth. We could continue chopping off the sharp
corners, but the wave function would become very

complicated. Instead, we change to the continuous
Gaussian type wave functions.

We chose the Gaussian type functions because: they are
localized at x = 0 and are either symmetrical or antisym-
metric with respect to the y axis; they are differentiable to
all orders, which implies a finite kinetic energy; they
approach zero rapidly as x tends to infinity (see Figure 3).
This third characteristic is very important because we have
to integrate the function from negative to positive infinity.
The proper asymptotic behavior as x approaches infinity is
vital for the convergence of all the integrals.

Our first choice for the “true” Gaussian wave function for
the ground state was:

Wy=Nye o, (19)
and for the first excited state (see Figure 4):
¥, =N, xe o | (20)

where Ng and N are normalization constants and o is the
constant governing the width of the wave functions,
Again, Wp and ‘¥, are orthogonal to each other. We
obtained energies of Ep=1.38 and E1=5.16, giving discrep-
ancies of 12% and 8.3% respectively. To our surprise,
these results were not as good as the answers obtained
from the trapezoidal functions. We believe that the
incorrect asymptotic behavior is responsible for the
mediocre quality of the fit.

To test if the incorrect asymptotic behavior caused the
problems, we adopted a modified Gaussian type wave
functions:

‘Pu:Nue_ﬁl‘Il‘ , (21)

and

¥, =N, xe Pl
Even though Equations 21 and 22 are constructed to
maintain the symmetry property of the wave functions, it
is not difficult to check that these functions and their first
and second derivatives are continuous at the origin. Again,
Ng and N are the normalization constants and [ is the
optimization constant used to find the minimum energy.
This set of trail wave functions gave us the energies of
Ey=1.2468 and E| = 4.7904. The discrepancies are greatly
reduced; to 1.4% and 0.56% respectively. These are the
closest results so far! We credit this accuracy to the
correct asymptotic behavior of the trial wave functions.

(22)

We continued with Gaussian type wave functions for the
ground state:

Y, =N, e, 23)
and for the first excited state:
¥, =N, xe o (24)

This time we found energy expectation values of Eg=1.32
and E1=4.96. The discrepancies are 7.5% and 4.1%
respectively. It appeared that the best results come from
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the Gaussian type functions in Equations 21 and 22.

Learning the asymptotic lesson from the previous work,
we try a different group of trial functions, the Lorentzian
type functions . They have many characteristics that are
similar to the Gaussian type functions: they all have the
smooth peak at x = 0 and that all approach zero rapidly as
x tends to *eo (see Figure 5). In addition, we can control
the asymptotic behavior by varying the parameters a and
n, where n is the power of the denominator.

The first Lorentzian type wave function we test was, for
the ground state (see Figure 5):

N,

Yy=—""—7 > (25)
g (l.rr + a“)
and for the first excited state (see Figure 6):
= 26)
[|x| + a’)

where Ny and N, are the normalization constants and a and
n can be obtained by optimizing the expectation values of
the Hamiltonian. All integrals involving the Lorentzian
type wave functions are of the form: 7

m_f’"'__ldx =
J:: (p+qx")"+
1 l{p)%[‘(%)r‘(l +n—%]

vp g (T +n)

for0<B<(n+1) @D
where T'(x) is the Gamma function. With the trial wave
functions of Equation 25 and 26, we find energy expecta-
tion values Eg=1.2467 when n = 3480 and E| = 4.7904
when n = 3328. These energies show discrepancies of
1.4% for the ground state and 0.56% for the first excited
state. They are identical to the 4t digit to those obtained
from using the wave functions of Equation 21 and 22.

1247
1.2469 +

1.2468

12467 200 w0 w0 500 1000
Figure 7

Expectation value obtained using Equation 25 versus the

exponent of the denominator, n.
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Figure 8

Expectation value obtained using Equation 27 versus the

exponent of the denominator, n.

In Figure 7, we show how the ground state energy de-
creases as n increases, but the rate of change with respect
to n is extremely small. We suspect that this may be a
gradual confluence of the Lorentzian type function,
Equation 25, into the Gaussian type function, Equation 21,
but we are not going to prove it in mathematical rigor.

To improve the results, we continued using Lorentzian
type ground state functions:

N
Y, =—" (28)
[x" +a“)
and first excited state functions:
N, x
Pt = 29
' (.t" + a‘) @9)

where Ny and N are the normalization constants and a and
n are optimization constants. The energies found were £y
= 1.296 (n=4) and E; = 4.883 (n = 5), resulting in discrep-
ancies of 2.5% and 5.4% respectively. In Figure 8, we
plot the ground state energy as a function of n. The
minimum occurred at very small n.

To confirm that we reached the best results for the
Lorentzian type function, we picked a trial ground state
wave function:

‘Pu= % ’ (30)
[|x| +as)
and the first excited state trial function:
W= X 31)
(|x| + as)

The energy expectation values were Eg = 1.36 (n=2) and
E, =5.02 (n = 3), resulting in discrepancies of 5.4% and
10% respectively. These values show that we reached the
best trial wave function of this type.

Finally, two more complicated analytical wave functions

L———
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Trial Wave Ground State Discrepancy Trial Wave First Excited State Discrepancy
function Energy function Energy %
Runge-Kutta Runge-Kutta
Numerical Solution 1.2258 Numerical Solution 4.7559
Straight Edged Straight Edged
Equation 11 1.4306 11.4 Equation 12 5.4947 15.3
Equation 14 1.3347 9.61 Equation 15 5.1208 7.49
Gaussian Gaussian
Equation 19 1.3801 12.3 Equation 20 5.1577 8.27
Equation 21 1.2468 1.41 Equation 22 4.7904 0.55
Equation 23 1.3216 7.50 Equation 24 4.9585 4.08
Lorentzian Lorentzian
Equation 25 1.2467 1.41 Equation 26 4.7904 0.55
Equation 28 1.2957 5.39 Equation 29 4.8825 2.49
Equation 30 1.3562 10.3 Equation 31 5.0197 5.37
Table 1 Table 2

Ground state energy expectation values calculated using
the various trial wave functions. The percentage
discrepancy is a comparison to the numerical solution.

which were used in the studies of the x4 and x6 potential 2
were included in the work for comparison. For the ground
state:

W, m N, eret-vat (32)
and for the first excited state:
‘{"|=!V|x‘.’;"“"z'w"r‘l N (33)

were used as the trial wave functions. The energy expecta-
tion values were Eg = 1.229 and E; = 4.764. Excellent
agreement was found in comparison with the Runge-Kutta
numerical integration method. However, the computations
involved tedious integrals and lengthy numerical codes. 8

Tables 1 and 2 are a summary of the numerical results of
this investigation. The lessons we learned were that when
working with the variational method one can always
improve the results by probing thoroughly the characteris-
tics of the problem. The solutions you get using the
variational method may not necessarily be correct, but they
certainly won’t be wrong.
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ABSTRACT
We modeled, with several simplifying assumptions, a type of convective flow on the surface of the sun
known as supergranulation. We checked our model against the real sun using the cross-correlation
statistic. We found, using a special form of the cross-correlation known as the auto-correlation, that
the supergranule velocity distribution used in our model is at least on the right track towards describ-
ing the actual velocity distribution within supergranules.

INTRODUCTION
Convection occurs in the interior of the sun up to 2 x 105
km below the photosphere. The convection cells come in
different sizes and last for different lengths of time, The
smallest cells, known as granules, are about 1 x 103 km
across and live for around 16 minutes. ! Mesogranules are
about 5 to 10 times larger 2 and live between 2 and 3
hours. 3 Supergranules, the subject of this study, are about
3 x 104 km across and live for a day or longer. 4 Giant
cells, the largest of these convection cells, are predicted
theoretically and are expected to be about 5 times as large
as supergranules. From time to time, claims of detecting
structures like these appear. 3

Gaseous flows on the surface of the sun can be observed
using a telescope equipped with a spectroheliograph. 6
This device measures the speed of the gasses in the
direction of the line of sight through the Doppler shifting
of spectral lines. Figure 1 is a picture of the sun made
with such an instrument. The blue colors represent
velocities moving towards the observer, red colors
represent velocities moving away and yellow represents
zero velocity along the line of sight.

Dan graduated Cum Laude from the University of
Nebraska at Omaha in August, 1997 with a bachelor
of science degree in mathematics and physics. In his
senior year, he received the physics department’s
award as “Most Outstanding Student”. He is
planning to attend graduate specializing in Optics in
the Fall of 1998. In his spare time, Dan enjoys
running, biking, fencing and golf.

The line-of-sight-velocity (LOSV) map of the sun, Figure
1, shows that much more is happening on in the sun than
supergranulation. On the largest scale the color difference
between eastern and western hemispheres, reflects the

Figure 1
Line-of-sight velocity map of the sun. Blue indicates
motion towards the observer, red away from the observer
and yellow represents zero velocity along the line of sight.
The dominant feature shown here is the rotation of the sun
about its axis. This is a Mt. Wilson image of the sun taken
in July of 1988.
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Doppler shift associated with the sun’s rotation. We used
an algorithm that filters out the extraneous flows, such as
the rotation of the sun, p-modes (five minute oscillations)
and the gravitational redshift. 7 After applying this
algorithm, a LOSV map such as the one shown in Figure 2
results. Maps such as Figure 2 serve as the standard
against which we compare our simulated maps.

The solar disk in the LOSV map, shown in Figure 2, is not
circular. This is the result of two manipulations: a change
in coordinates; leaving off the outer 5% of the radius of the
solar disk to avoid spurious effects which are the result of
foreshortening on the solar limb. Each point on the
surface of the sun can be designated by two variables: 8,
the colatitude, the angle from the north pole; and ¢, the
azimuthal angle, measured from the positive x axis, as
shown in Figure 3. Therefore, we can plot each point on
the sun as a point on the Cartesian plane. This coordinate
transformation alone would cause the map of the sun to
appear rectangular in shape. The result of these two
manipulations is a ‘television screen’ shaped sun. Large
dark areas were masked out with 0’s because they have
magnetic fields large enough to compromise the measured
Doppler velocities.

THE SIMULATION
Our model is based on an earlier work. 8 This model of a
spherical, differentially rotating sun was originally written
in FORTRAN. We chose Matlab™ as our developing
platform because it has several advantages over the
traditional languages such as FORTRAN or C. Matlab™
has an extensive, user-friendly, help facility. Itis a high
level language with many predefined functions which
make data storage, imaging and other functions trivial.
The greatest advantage of Matlab™ is that every variable
is a matrix and contains fast, elegant ways of dealing with
typical matrix and vector operations. This is particularly
suited to our applications since we must generate and
manipulate LOSV maps that are 512 by 512 matrices of
pixel values.

Simplifying Assumptions

Our model of supergranule activity in the sun is based on
several assumptions. 9

1) Supergranules are all identical. They live for the same
length of time, have the same size, and are circular with
well defined centers that are randomly and independently
distributed over the surface of the sun.

2) Supergranules revolve about the sun at the same rate as
the gasses of the photosphere. The rotational velocity, of
the supergranules over the surface of the sun is given by
the sidereal rate of rotation, 2, which depends on the
colatitude, 8, of the center of the supergranule:

Qz{ 14.44 —1.98 [cos’(e) + cos‘(ﬁ)]} f"—"ﬁ% )

3) Supergranules do not evolve much over time. They are
born, mature quickly and die quickly. 10

Figure 2
The same sun as in Figure | after processing to remove the
large scale features. The “television screen” shape is a
result of removing the outer 5% of the solar radius and a
change in coordinate system.

4) Atany particular time, the total number of
supergranules ‘alive’ on the sun is relatively constant. To
accomplish this, we introduce the concept of the
supergranule family. A time of one ‘generation gap’, g,
after the death of a parent supergranule, a daughter
supergranule is born. This new supergranule lives for a
specific period of time (two half lives - 21) and then dies.
One generation gap later, another supergranule is born. If
there are Ny supergranule families, the average number of
‘living’ supergranules on the sun at any particular time will
be:

= 21
(N)_N,,g”r )

‘lz

V
Uator
X = Y
observer

Figure 3

Coordinate system used in our model of the sun.
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Horizontal Velocity
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Distance from Supergranule Center

Figure 4
A plot of the horizontal velocity vs distance from the center
of the supergranule (from Equation 3).

The birth time of the first supergranule in each family is
random, but subsequent generations in each family appear
with clocklike regularity with a period of 21 + g.

To prevent an exact repetition of our model sun every
generation, the birth location of the daughter is placed at a
random position within a circular birth zone whose radius
increases with the square root of the time after death. The
birth zone is centered on the position that the parent would
have reached if it had continued to revolve around the
sun’s axis after its death.

5) The predominant flow of gases in supergranules is
parallel to the surface of the sun, with peak speeds
between 300 m/s to 500 m/s. Vertical velocities, perpen-
dicular to the surface of the sun are much smaller, except
at cell boundaries, where significant down drafts exist. 11
The horizontal velocity is a function of the distance, r,
from the center of the supergranule: 12

Vior = Vo & cxp[(a;;zrz}l :

Figure 4 is a plot of Equation 3. Note that the horizontal
velocity reaches its maximum at the scale radius r = a.

3)

6) The supergranules are independent of each other, they
do not interact. When the supergranules overlap, their
velocity fields add vectorially.

THE ALGORITHM
Generating Supergranule Histories
Since each supergranule lives for a time twice the half life
and travels along a path of constant colatitude at a speed
given by Equation 1, the position of any supergranule at
any time can be determined if we track its mid-life time
and position. Three matrices are created that contain for

each family (column) and for each generation (row) the
mid-life properties: time, central 6 and central ¢. This is
done in three steps:

* The user inputs the number of supergranule families.

* Random mid-life times for the first generation of each
family between - T and T +g are generated. From this,
successive mid-life times are generated in increments of
21+g until a specified final time.13

* Random positions for the first generation of each family
are created. To ensure a uniform distribution over the
surface of the sun, a random cos(8) and a random ¢ are
generated. A randomly chosen 6 and ¢ would
overpopulate the poles. 14 Using these initial positions and
the values of #, g and a specified random walk coefficient,
C, random birth positions are generated within birth zones
of radius, rp;:
r."l: = C \{E » (4)

and azimuthal angle, @,, :

(pb: =8 Q(e;urrm)
from the death position of the parent.

&)

Generating the LOSV Map

After generating the mid-life times and positions of the
supergranules, we use Equation 3 to create model LOSV
maps, analogous to Figure 1, of the surface of the sun. We
determine an ‘observation time’ at which we would like to
generate a map. Then we determine which supergranules

observation

o
s,

i:jc&]_)\ /Q// //J / ’L

Figure 5
Three dimensional history of supergranulation with time
along the vertical axis, the azimuth angle along the
horizontal and the colatitude angle into the page. To
simplify the diagram, differential rotation is ignored, so
the tilt of each line is the same. The “TV mask" is omitted.
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are alive at this time (called the contributing
supergranules).

The history of the supergranules is visualized in three
dimensions: 8, ¢ and time. Figure 5 is a representation of
the history of the supergranule centers as they move
through time along constant colatitudes. !5 Their centers
trace out paths of equal duration. A dot at the center of
each path represents mid-life. At a particular observation
time, the generated map can be represented as a plane
parallel to the 6—¢ axes. The disks about the points where
the line segments pierce the plane represent the limiting
radii ( r € 4a) within which the supergranules make a non-
negligible contribution to the line-of-sight-velocity. To
simplify the diagram, differential rotation is ignored, so
the tilt of each line is the same and the “TV mask” is
omitted.

At a given observation time, each family of supergranules
can contribute at most one live supergranule. Therefore,
contributing supergranules are located by looping through
each family’s mid-life times to determine which ones are
alive at the particular observation time. Simultaneously,
the corresponding positions at the observation time are
calculated from the mid-life positions using Equation 1.
These positions are stored in two separate arrays used in
generating the LOSV map.

The positions of the supergranule centers are transformed
into pixel locations on our 512 x 512 matrix. To find the 6
and ¢ values for the center of a pixel location (i,j) we use:

0=(i-3)sh-%
o=(i-4)sh - ®

We subtracted ©/2 from ¢ since we are looking at the sun
antiparallel to the x-axis and, by convention, the ‘prime
meridian’ (¢ = 0), must cut the solar disk in half.

Examination of Figure 4 shows that when r = 4a, Vj,,= 0.
This defines the edge of the supergranule. Using this
condition and Equation 6, we loop through the pixels
affected by each contributing supergranule and calculate
the LOSV due to that supergranule using Equation 3.
Appendix | contains the derivation of the LOSV at a point
on the sun due to the horizontal velocity of a supergranule.
Using the results shown in Appendix 1, we generated
LOSV maps. Figure 6 is an example of one such calcula-
tion. As in Figures 1 and 2, blue colors represent veloci-
ties directed towards the observer and red represents
velocities directed away

TESTING THE MODEL
Cross-correlation is a measure of the similarity between
two ordered sets of equal length. The discrete version of
the cross-correlation is:

5 ()

Cross Correlation = ——————, (7N

where v and v’ are the members of the sets. We use the
cross-correlation to compare horizontal strips of colatitude
across pairs of LOSV maps generated at a certain time
apart (called the lag time).

Imagine two LOSV maps generated at some lag time apart,
the earlier map lying on top of the later one. If the top
map is slid some distance (the azimuthal shift), we can
calculate the cross-correlation on an overlapping strip of
colatitude. The cross-correlation is expected to reach a
maximum when the azimuthal shift is equal to the sidereal
rate of rotation (Equation 1) times the lag time.

We used a special case of the cross-correlation of thin
bands along the equator where the lag time is zero to
analyze our results. This technique compares one map to
itself and is properly called the auto-correlation. The
shape of the auto-correlation should depend heavily n the
size and the velocity distribution of the supergranules.
Figure 7 is a plot of the auto-correlation for both the real
sun and our model sun. Each curve is averaged over many
maps.

The large negative dip in each curve of Figure 7, at a lag
distance of about 3 degrees, is a result of the circular
symmetry of the supergranules. The similarity of the
curves shows that the Simon-Weiss velocity distribution
that was used in our model is at least on the right track.
The fact that the depth of the first dip in the auto-correla-
tion for the real sun is not as deep as that of the model may
be due to unfiltered noise in the real sun LOSV maps,
random non-symmetries in the shapes of the real
supergranules or differences between the theoretical
velocity distribution and the actual velocity distribution, or
most probably, a combination of these.

In the future, further analysis of the cross-correlations may
give insight into the rotation, life time, size and other
properties of supergranules. The model can serve as a
tool for comparison between the theoretical and the
observed.
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Colatitude
E

Figure 6
Line-of-sight velocity map of the model sun, analogous to
Figure 2. It has roughly 360 visible supergranules within

the 95% radius “TV screen”. The colors again reflect the
relative motion of the supergranules.

APPENDIX 1
LOSYV derivation 16
The coordinates of the supergranule center (8.,¢.) and the
center of the pixel (8,,0p) can be transformed into Carte-
sian coordinates as:

Teenter = (Xes Yor Zc)
X, =r,,,sin(0,) cos(p,)

Fpicet = (Xps Ypr Zp)

X, =r,, sin(8,) cos(p,)
(8)

Yp = T SIN(B,) sin(9,)

2, = T COS(Q,)

¥, =Ty, sin(8)sin(@,)
Z, = Ty COS(Q,)

The distance, r, between the two positions is: 17

-

: rw,,] : )

The distance found by Equation 9 is used to calculate the
horizontal velocity using Equation 3.

= e | A
=Ty, Cos [ Feenter

To determine the LOSYV, we need to compensate for the tilt
of the sun, B, = 7.25%, from the plane of the earth’s orbit.
This is done by a rotation of axes by an angle B,. The
pixel and supergranule center location in the rotated
(primed) coordinate system is:

cosBy 0 —sin(B)
rF= 0 1 0 F. (10)
sin(B,) 0 cos(B,)

The line-of-sight component of the horizontal velocity is
found by multiplying the horizontal speed by the x-
component of the unit vector in the direction of the
horizontal velocity. To find that unit vector, we take the

cross product of the rotated supergranule center vector and
the rotated pixel vector and then take the cross product of
that and the rotated pixel vector again:

N’ = (F:.'rmrr X ;-:nim) X F:Di.l‘ff (l 1)
The normalized x-component is found by dividing the x

component of Equation 11 by the magnitude of Equation
11:
U, = e, .
VNN
Equation 12 is multiplied by the horizontal velocity
(Equation 3) to get the LOSV:

vk!.t = Ux VM! .

(12)

(13)
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ABSTRACT
A Helium-Neon laser was used to study the diffraction patterns of helical objects in an upper-level
undergraduate laboratory experiment. The presence of such objects in a variety of applications, from
biology to manufacturing, and their distinctive diffraction patterns make them ideal candidates for
illustrating the principles of diffraction in a laboratory. Predicted correlations between the patterns and
diameter, pitch and coil angle were verified. The experiment also provides opportunities for introduc-
ing and using numerical Fourier transform techniques.

INTRODUCTION
Almost all physics students are familiar with the standard
examples of diffraction presented in the introductory
courses: diffraction by one or two slits, or by a circular
aperture. Unfortunately, the simplicity of the objects
producing the diffraction patterns fails to demonstrate the
more general principles of Fraunhofer diffraction. Essen-
tially helical objects, such as screws and springs, are
examples of nontrivial shapes that produce interesting
diffraction patterns when illuminated by coherent light. A
study of the diffraction patterns produced by these shapes
is an excellent advanced laboratory experiment.

Light diffraction by helical objects has applications in a
number of fields. The patterns provide vital clues that
helped identify the helical structure of DNA in the 1950's.!
In a manufacturing setting, diffraction patterns help
provide automatic production control of screws and other
small pieces. 2-4 Surprisingly, the literature is surprisingly
deficient in this arca. We were unable to find discussions
of the topic in any standard optics textbook or journal in
the English language. The idea for this experiment was
taken from a book by R.S. Sirohi. 5

Joshua Levey developed this laboratory as a junior at
Hope College, where he studied physics, computer
science and mathematics. He now continues his
studies under an NSF Graduate Fellowship in
mathematics at the University of California, Berkeley.

MODELING DIFFRACTION
When a coherent light source illuminates an aperture, a
Fraunhofer diffraction pattern of the aperture is formed at
infinity. If the geometry of the aperture A is described by
the function 1(x,y), where #(x,y) = 1 for points where the
light is transmitted through the object and #(x,y) = 0
elsewhere, the amplitude distribution at each point of the
Fraunhofer image is proportional to the integral:

f I 1(x,y) e r ) dx dy | (nH
A

where p and g are the direction cosines of the image point
and k is the wavenumber of the light. The light intensity
of the image is given by a two-dimensional Fourier
transform of the shape of the aperture. A more detailed
description of this can be found in standard optics texts. 6

We find the diffraction pattern numerically by using a two-
dimensional fast Fourier transform (FFT) algorithm to
perform the necessary convolution. FFT's can be com-
puted by a variety of means. Computer program packages
such as Matlab™ 7 will calculate the FFT’s. If the student
wishes to write a program to do the FFT, algorithms and
discussions can be found elsewhere. 8 We used a freely
available FFT program? that does efficient computation
and requires only small amounts of additional program-
ming to facilitate reading and writing the data.

The completed program calculated a grey-scale image of
the diffraction pattern of any aperture, stored as an array of
roughly one thousand by one thousand pixels. The
apertures were defined using a drawing program 10 and the
output written in a standard format readable by the FFT
program. For example, Figure 1(a) shows a circular
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(a) (b)
Figure 1
A circular aperture (a) and its computed Fraunhofer
diffraction pattern (b).

aperture and Figure 1(b) is the calculated transform,
showing the familiar concentric rings of the Airy diffrac-
tion pattern. Since the coloring of the output image is a
function of the logarithm of the intensity, small irregulari-
ties introduced by aliasing effects in the FFT were appar-
ent in some places. The calculations for grids of such size
took only a few seconds on a Sun SPARCstation 20. If
computer resources are scarce, smaller grids can be used.

Our goal was to study objects in the general shape of a
screw, having an opaque silhouette of the form shown in
Figure 2(a). The diffraction pattern produced when
coherent light illuminates the screw forms the general
shape of an X, as shown in Figure 2(b). Sirohi 5 gives an
analytical expression for the light intensity at the focal
plane. Figure 3 shows the details of the object and the
corresponding diffraction pattern. Note the following
characteristics:

* The horizontal spacing of the intensity maxima is
inversely proportional to the diameter of the screw:

do 1/D.

* The vertical spacing of the intensity maxima is inversely
proportional to the spacing between the threads of the
screw: p o 1/P.

* The angle between the diagonal lines on the X of the
diffraction pattern is the same as the thread angle o

(a) (b)
Figure 2
The outline of a typical screw (a) and its computed
Fraunhofer diffraction pattern (b).

EXPERIMENTAL PROCEDURE
All that is needed to produce the diffraction is a Helium-
Neon laser, some simple optical equipment and a variety
of small helically shaped objects, such as screws or
springs. In principle, it is sufficient to illuminate the
object with the laser and focus the beam onto a screen with
a converging lens. However, the patterns are best seen if a
few additions to this system are made.

Figure 4 shows an experimental layout that we found to be
effective. The beam, originating at the laser (1), is
expanded to about 3 cm in diameter and collimated (2).
Any extraneous light is caught by the mast (3) before
interacting with the object (4). If the beam were now
focused directly onto the screen, the central bright spot of
the pattern would “drown out” the more faint pattern we
wish to see. To eliminate the central bright spot, the
converging lens (5) focuses the light onto a string crosshair
(6), that blocks the light passing directly through the center
and along the horizontal and vertical axes. Following the
crosshair, converging (7) and diverging (8) lenses are used
to refocus the beam onto the screen. The size and focal
point of the emage can be adjusted by moving lenses 7 and
8.

The crosshair can be adjusted (or removed) to block any
part (or none) of the pattern. For instance, if the screw is
mounted on a horizontal base, the line of the base creates a
bright vertical line through the center of the pattern. This
can be blocked by the vertical string of the crosshair,
allowing the other features of the pattern to be seen better.

The screen (9) is white cardboard or, if photographs are
desired, a ground glass plate. Cardboard shields are used
at several stages to mask any stray light, keeping it from
reaching the screen. Table 1 lists the properties of the
lenses we used in our experiment.

(b)

Figure 3
Schematic diagram showing the relationship between the
screw parameters (a) and the diffraction pattern (b):

pol/Pandd al/D.
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(a)

(b)

Figure 5
Diffraction patterns produced by (a) a 2-56 screw, (b) a 1/4-20 screw and (c) the spring from a ball point pen.

RESULTS
We obtained diffraction patterns produced by a number of
screws and springs. In each case, a pattern of the form
shown in Figure 2(b) was obtained. Figure 5 shows some
typical results. Figure 5(a) the pattern produced by a
standard 2-56 screw. Figure 5(b) is the pattern produced
by a 1/4-20 screw. Figure 5(c) is the pattern produced
when the laser light was diffracted by the spring removed
from an inexpensive ball-point pen. The angle between
the diagonals of the X in Figure 5 was within two degrees
of the true value for each object. (It is useful to know that
the standard thread angle for the standard American
machine screw is 60 degrees. )

To demonstrate the effect of diameter and thread pitch on
the diffraction pattern, the patterns of six screws of various
sizes were photographed and measured. Figure 6 shows
the number of bright spots per unit of horizontal distance

9

Figure 4
Layout of the optical elements for obtaining diffraction
patterns.

for the pattern produced by each screw as a function of its
diameter. Given the uncertainties of the photographic
measurements, the least-squares regression line matches
the data well, and passes almost exactly through the origin,
This is evidence that the horizontal spacing between
maxima in the intensity pattern is inversely proportional to
the diameter of the screw, just as it would be for a smooth
rod. The inverse relationship between the screw pitch and
the vertical spacing of the diffraction pattern is demon-
strated in a similar fashion in Figure 7.

The parameters of the screw can be measured directly
from the pattern dimensions. It has been suggested 5 to
use the diffraction patterns to spot errors in a production
line setting. Other patterns also can be studied. The ease
in the drawing of apertures and the calculation of the

Lens  Focal length Diameter
5 42 cm 3cm
7 16 cm 2cm
8 -6 cm I cm

Table 1

Lenses used in Figure 4.
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Density of maxima horizontally

0 1 2 3 4 5 6
Diameter (mm)
Figure 6

Number of maxima in the diffraction pattern per arbitrary
unit of width as a function of screw diameter.

diffraction patterns produced by the apertures makes
possible a search for new shapes that have interesting-
looking diffraction patterns.

This diffraction experiment in an ideal way of applying the
concepts of Fourier transforms to a real system. The
computational aspect of the experiment gives a practical
experience in using FFT’s and gives an intuitive “feel” for
Fourier transforms. The simplicity of the apparatus allows
the student to focus on the diffraction patterns without
spending too much time on experimental details.

08

06

Density of maxima vertically

0 0.4 0.8 1.2 1.6
Thread spacing (mm)

Figure 7

Number of maxima in the diffraction pattern per arbitrary
unit of height as a function of screw thread pitch.
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ABSTRACT
We investigated the interaction of a train of short laser pulses and an isolated Lorentz (classical
harmonic oscillator) model atom. Our classical results are derived from the classical Rabi problem.
We study the behavior of the atom at a detuning value where the second pulse removes all of the
energy from the atoms. We compare our classical results with those obtained by other investigators
using the optical Bloch equations. From the Bloch equations, we expect agreement for laser pulses of

low intensity. However, we find that the agreement extends to cases where the pulses are large enough

to significantly depopulate the lower level.

INTRODUCTION
In this article, we study the response of an Lorentz model
atom to a train of otpical pulses. The electric field of the
optical beam creates a dipole moment in the atom. The
Lorentz model atom assumes a restoring force proportional
{o the displacement of the electrom from the proton. This
atom acts as if the electron were attached to the proton by
a “spring” (the Lorentz model is discussed in many optics
books). The optical Bloch equations I, which model the
dynamics of stimulated upward and downward transitions
for a set of spins when a magnetic field is swept linearly
with time through a resonanace condition, include
quantum mechanical effects. We use only the Lorentz
model atom in our calculations and, therefore, do not study
the optical Bloch Equations directly. We do, however,
compare our calculations with the optical Bloch derived
results of other investigators.

We consider the case of a train of square optical pulses that
can be created by blocking or chopping a cw single-mode

Rebecca is a sophomore psychology major and
physics minor at Drew University. This research was
conducted during the summer after her freshman year
under an NSF grant at Stevens institute of Technology.
She plans to graduate in the year 2000 and then go on
to graduate school. Rebecca enjoys running,
spending time at the shore and taking day trips with
her family and boyfriend in her free time.

laser beam. The laser beam is periodically chopped rather
than turned off. An implication of using a chopped cw
laser beam is that each pulse is a portion of a continuous
sine wave. The portions of the sine wave in the pulse are
not identical unless the chopping period is an integer
multiple of the optical period. Our case is different from
the case of two identical pulses which could be produced,
for example, by using a beam splitter and sending one
pulse through a delay time. a detailed discussion of the
implications ofusing either of these types of pulses can be
found elsewhere. 2

THE MODEL
The system we will be investigating is a Lorentz model
atom in a chopped laser field. The train of square laser
pulses has a low duty cycle 3, as illustrated in Figure 1.
The duration of time when the laser pulse is ‘on’ is labeled
1, the time when it is ‘off” is labeled fy and the entire cycle
time is labeled .. We use the word ‘off” to describe the
time periods when the laser beam is not interacting with
the atom even though the beam is chopped rather than the
laser turned off.

%,
S| |

16——;—)1

Figure 1
Square optical pulses where t, represents the pulse time, Iy
represents the dead time, 1, represents the total cycle time
and tp >> tp.
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While the pulse is ‘on’, the equation of motion of the atom
is:

X+2P x+w?=A cos(wr) , (N
where [ describes friction, @, is the undamped natural
frequency of the oscillator and A = eE(t)/m, where e is the

charge on the electron, E(1) is the optical field and m is the
mass of the electron,

Using the method of the classical Rabi problem 5, we
make a shift from the ‘x’ notation, which follows the
motion of the electron in the atom, to ‘«’ and ‘v’ notation
by implementing a change of variables

x(t) = x, {u(t) cos(wt) —v() sin(wr)} , (2)
where x,, is a constant and  is the frequency of the laser.
The importance of making this change of variables is that
the new variables describe the envelope of x(r) and are
easier to keep track of since they vary more slowly than
x(t). The variable u tracks the part of the dipole moment
which is in phase with the optical field, while the variable
v tracks the part of the dipole moment which is 90° out of
phase with the optical field.

We substitute Equation 2 into Equation 1 and separate the
terms multiplying sin(wr) from the terms multiplying

cos(mr). 4 Since the sine and cosine are linearly indepen-
dent functins, the coefficients of each must be identically

zero. Collecting terms and solving for & and v yields:
d=-Av-Pu (3)
v=Au-Bv-xE , 4)

where KE = A/(2x,m) and A = (w,-w), the difference
between the natural frequency of the atom and the laser
frequency. We have dropped terms using the slowly
varying envelope approximation:

<<y
ii<<wu . (5)

n<<wu

ii << u
Since we are considering the case near resonance, where A
is much smaller than ®, , we use the approximation:

w,+0=20 . (6)

We neglect friction during the short periods of time, f,,
when the laser is ‘on’ and include friction for the longer
periods of time when the laser is ‘off’. Solving Equations
3 and 4 for u and v with B = 0 (when the pulse is ‘on’)
gives:

1 _ cos(AT)
A A

cos(A1) —sin(AT) - KE(
u(T)

v(T) H sin(AT) cos(AT) K‘E(

sin(AT) “o
A

0 0 1

where xE is a constant because we are considering square
pulses, and T is the time elapsed since the start of the
current pulse. Equation 7 gives the time evolution of u
and v without friction. To find the values of u and v at the
end of the pulse, 7 is replaced with ¢,

For the longer period of time when the laser is ‘off’, we
include friction. KE =0, since the electric field from the
laser is no longer present. Solving Equation 3 and 4 for u
and v in this case yields:

u(t)| | e Mcos(At) e Psin(AT) 0 .“,.
w(1) | e Psin(AT) e Pcos(AT) 0 vpls (8
1 0 0 1 |

where u, and v, are the values of « and v at the beginning
of the interval considered, the values of u and v at the end
of the previous pulse. To find the values of « and v at the
end of the ‘off” time, the beginning of the next pulse, we
replace T with 74 in Equation 8.

We now have the solutions for both the time periods: when
the laser beam is ‘on’ and when the laser beam if ‘off”.
With these solutions we can make plots of polarization
(either v or u) vs time; or polarization vs detuning A at any
fixed time; or the oscillator energy vs time or detuning.

In our case, the oscillator energy is proportional to the
square of the amplitude of x(t), as with any simple
harmonic oscillator. The square of the amplitude of x(1) is
equal to (u2 + v2). Figure 2 shows the oscillator energy
(in arbitrary units) versus detuning at the end of the
second pulse. The bumps seen in Figure 2 are known as
Ramsey fringes 7. The solid line shows our results, while
the dashed line shows Thomas’ quantum mechanical
results.

Figure 2 is interesting as it illustrates an occurrence of
what we nicknamed ‘killer’ pulses. These ‘killer’ second
pulses occur at the detuning values where the energy

T T I T 1
>
“ —
1]
L+ ]
=1 -
4]
A /\/\ N e, s
0 05 1 1.5 2 15 3
Detuning
Figure 2

Oscillator energy at the end of the second pulse versus
detuning with = 0, t, = 2.54 ns and t, = 20 ns for an
oscillator starting at rest. The solid line shows our results
and the dashed line shows results for a Gaussian pulse
train as determined by Thomas. 7
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reaches zero. At those particular detuning values, when
the second pulse hits the atom, it removes all of the energy
from the atom instead of adding energy to the atom. This
happens because when the laser is ‘on’, the atom oscillates
at the frequency of the applied field. Once the laser is
‘off’, the atom begins to oscillate at its natural frequency,
drifting out of phase with the laser at a rate given by the
detuning. When the laser turns back ‘on’ at those particu-
lar ‘killer’ detuning values, the phase of the oscillating
atom has drifted from the laser in such a way that the two
have an unfavorable phase relation. 6 Consequently, the
second pulse removes all of the energy from the oscillating
atom for those particular detuning values, where A ¢, is
approximately equal to an odd integer multiplied by .

Figure 2 shows excellent agreement with a model that uses
a coherent train of Gaussian shaped laser pulses. 7 The
dotted line is for low intensity pulses. In Figure 2, B =0,
1p = 2.54 ns and t,= 20 ns. The values were chosen to
match those used for the coherent train of Gaussian shaped
laser pulses. The oscillator starts at time 0 with no energy;
the values of u and v start at 0.

Comparison of optical Bloch results with Lorentz
model results

The optical Bloch equations account for quantum me-

| 1 1 L
0 2 4 & ' 10

Detuning

Figure 3
Steady state u and v versus detuning for pulse area of /8,
B = (16ns)-1, tp = 0.7 ns and t, = 10 ns. The solid line
shows our results and the dashed line shows Temkin's
optical Bloch results.

Detuning

Figure 4
Steady state u and v versus detuning for pulse area of w2,
B=(I6ns)1, tp=0.7 ns and t, = 10 ns. The solid line
shows our results and the dashed line shows Temkin's
optical Bloch results.

chanical effects and allow consideration of high intensity
laser pulse trains 2:

tl:—&v-—[}u (9)
1:'=A11—BV-KEW (10)
w=—kKEw-y(w+1), (I

where w is a parameter that determines the population
inversion. When w = -1, the atom is in the ground state,
when w = +1, the atom is in the upper state. 7y determines
the population decay rate. For example, in the absence of
an optical field (xE = 0), Equation 11 immediately shows
than an atom in the upper state (w = +1) would decay back
to the ground state according to w = 2e-n -1. We expect
our results to agree with the optical Bloch results when the
energy i1s low and the pulse area is small. At these
conditions, w = -1, which causes Equation 9 and 10 to
become Equations 3 and 4 which we used in our classical
calculations.

To compare our results with Temkin’s Bloch results 3, we
plot the steady-state values of polarization versus
detuning. We plot « and v at the instant that the pulse turns
back ‘on’ for the nth time versus detuning, where n is any
number large enough so that there are no more transients,
We choose #, = 0.7 ns, t, = 10 ns and B = (16ns)-1.

Figure 3, with the pulse area in the Bloch results set equal
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Energy
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Figure 5
Oscillator energy at the end of the second pulse versus
detuning for an area of W4, b = 0, 1, = 0.7 ns and 1, = 10
ns for an oscillator starting at rest. The solid line is our
results, the short dashed line Temkin's optical Bloch results
and the longer dashed line the results using Thomas’
Gaussian pulse train.

to /8, shows close agreement between our results (the
solid line) and the Bloch results (dotted line). Figure 4,
with pulse area of the pulse in the Bloch results set equal
to 1/2, illustrates significant disagreement, but still closer
agreement that we initially would have expected for a
pulse are of that size. We saw similar results for the
polarization values at the end of the second pulse versus
detuning graphs.

Figure 5 shows the oscillator energy at the end of the
second pulse versus detuning with the same values of 1,
and 1, used in Figures 3 and 4 and f=0. The oscillator
starts with zero energy, so « and v start with values equal
to zero. We include in Figure 5 our results (solid line),
Temkin’s optical Bloch results (short dashed lines) and
Thomas’ Gaussian pulse train (long dashed lines). We had
to generate the Bloch results for the oscillator energy at the
end of the second pulse from equations found in reference
2.

Figure 5 shows significant agreement between all three
results. This is surprising since the pulse area of

n/4 is quite large. The results agree less closely as we
considered cases of larger pulse areas.

Our results illustrate that we can put our classical intuition
to use in cases where it seems that only quantum intuition
can be used. Our classical results agree with those
predicted by the Bloch equations. We found that this
agreement continued for pulse areas large enough to
significantly depopulate the lower state, where it would
seem that the classical results should fail.
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PREPARING A MANUSCRIPT FOR PUBLICATION
Rexford E. Adelberger, Editor

Perhaps the most important thing for you to keep in mind when
you write a manuscript which you intend to submit for publica-
tion to the Journal of Undergraduate Research in Physics is that
the audience that will be reading the paper is junior or senior
physics majors. They are knowledgeable about physics, but
unlike you, they have not spent as much time trying to under-
stand the specific work which is being reported in your paper.
They also can read English well, and expect the paper to be
written by a colleague, not a robot or an ‘all-knowing' computer.
There is a big difference between the comments you write in the
margin of your lab notebook or what you might write in a
technical brief and what you should present in a paper for
publication in a scientific journal.

There is a significant difference between a Journal article and
keeping a journal. Your laboratory data book should be the
Jjournal of what you did. It contains all the data, what you did
(even if it was an attempt that turned out to be wrong), as well as
comments as to what you were thinking at that time. The Journal
article is an discussion of how you would do the research without
excursions along blind alleys and hours spent collecting data that
were not consistent. The reader should not necessarily be able to
completely reproduce the work from the Journal article, but the
reader should be able to understand the physics and techniques of
what was done.

How a person uses Journal articles to find out about new ideas in
physics is often done in the following way. A computerized
search, using key words in abstracts, is performed to find what
work others have done in the area of interest. If the abstract
seems to be about the question of interest, the body of the paper
is tracked down and read. If the reader then wants to find out the
finer details of how to reproduce the experiment or the derivation
of some equation, the author of the paper is contacted for a
personal in-depth conversation about the more subtle details.

The general style of writing that should be followed when
preparing a manuscript for publication in the Journal is different
from what you would submit to your English literature professor
as a critique of some other work. The narrative of the paper is
intended to do three things: 1) present the background necessary
for the reader to appreciate and understand the physics being
reported in the paper: 2) discuss the details of what you did and
the implications of your work; 3) lead the reader through the
work in such a way that they must come to the same concluding
points that you did. When finished with your paper, the reader
should not have to go back and try to decide for themselves what
you did. Your narrative should lead them through your work in
an unambiguous manner, telling them what to see and understand
in what you did. The interpretation of the data or calculations
should be done by the writer, not the reader. The interpretation of
your results is the most important part of the paper.

You should take care to make sure that the material is presented
in a concise logical way. You should make sure that your
sentences do not have too many dependent clauses. Overly
complicated sentences make the logic of an argument difficult to
follow. You should choose a paragraph structure that focuses the
attention of the reader on the development of the ideas.

A format which often achieves these aims is suggested below:
ABSTRACT : An abstract is a self contained paragraph that

concisely explains what you did and presents any interesting
results you found. The abstract is often published separately
from the body of the paper, so you cannot assume that the reader
of the abstract also has a copy of the rest of the paper. You
cannot refer to figures or data that are presented in the body of
the paper. Abstracts are used in computerized literature
searches, so all key words that describe the paper should be
included in the abstract.

INTRODUCTION: This is the section that sets the background
for the important part of the paper. It is not just an abbreviated
review of what you are going to discuss in detail later. This
section of the narrative should present the necessary theoretical
and experimental background such that a knowledgeable
colleague, who might not be expert in the field, will be able to
understand the data presentation and discussion. If you are going
to use a particular theoretical model to extract some formation
from your data, this model should be discussed in the introduc-
tion.

Where appropriate, factual information should be referenced
using end-notes. When presenting background information, you
can guide the reader to a detailed description of a particular item
with the statement such as: "A more detailed discussion of
laminar flow can be found elsewhere 1", 1f you know where
there is a good discussion of some item, you don't have to repeat
it, just guide the reader to the piece.

How one proceeds from this point depends upon whether the
paper is about a theoretical study or is a report on an experiment.
I will first suggest a format for papers about experimental
investigations and then one that describes a theoretical deriva-
tion.

Experimental Investigations
THE EXPERIMENT: This section guides the reader through
the techniques and apparatus used to generate the data. Sche-
matic diagrams of equipment and circuits are often easier to
understand than prose descriptions. A statement such as "A
diagram of the circuit used to measure the stopping potential is
shown in Figure 6" is better than a long elegant set of words. It
is not necessary to describe in words what is shown in a diagram
unless you feel that there is a very special part which should be
pointed out to the reader. If special experimental technigues
were developed as part of this work, they should be discussed
here. You should separate the discussion of the equipment used
to measure something from your results. This section should not
include data presentations or discussions of error analysis.

DATA PRESENTATION AND INTERPRETATION OF
RESULTS: This is the most important section of the paper. The
data (a plural noun) are the truths of your work. This section
should lead the reader through the data and how errors were
measured or assigned. The numerical data values are presented
in tables and figures, each with its own number and caption, e.g..
“The results of the conductivity measurements are shown in Table
3". Itis difficult to follow narratives where the numerical results
are included as part of the narrative. Raw, unanalyzed data
should not be presented in the paper. All figures and tables
should be referred to by their number. Any figure or table that is
not discussed in the narrative should be eliminated. Items which
are not discussed have no place in a paper.

A Theoretical Study
THE MODEL: This part should consist of a theoretical
development of the constructs used to model the physical system
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under investigation. Formulae should be on separate lines and
numbered consecutively. The letters or symbols used in the
equations should be identified in the narrative, e.g.. The potential
can be approximated as:

W=2Z-a(p) , (1
where Z is the number of protons and G is the screening constant
that is dependent on the charge density, p, of the inner electrons
of the K and L shells. 1f you wish to use this formula at a later
time in the narrative, you refer to it by its number, e.g.. "The
straight line fit shown in Figure 3 means that we can use
Equation 1 to extract a value of..."

CALCULATIONS: This section presents a summary and
discussion of the numerical results calculated from the model.
The results should be presented in tables or graphs, each with a
caption. A table or graph which is not discussed in the narrative
should be eliminated. Data that are not interpreted by the writer
have no place in a paper. One should reference numerical results
that are used in the calculations and come from previous work
done by others .

The following sections pertain to both types of papers.

CONCLUSIONS: It is indeed rare that one can come to clear
and meaningful conclusions in one paper. I do not know of many
papers where this section should be included.

REFERENCES: All references, numbered in order from

beginning to end of the paper, are collected together at the end of

the paper. You should be aware of the following format:

If the reference is a text-

1. A.J. Smith and Q.C.S. Smythe, Electromagnetic Theory,
Addison Wesley, New York, (1962), p. 168.

If the reference is a journal-

2. J. Boswain, Journal of Results, 92, (1968), pp. 122-127.

If the reference is unpublished-

3) R.J. Ralson, private communication.

ACKNOWLEDGMENTS: This short section should acknowl-
edge the help received (that is not referenced in the previous
section) from others. This is where you would give credit to a lab
partner or someone in the machine shop who helped you build a
piece of equipment.

OTHER ADVICE
TABLES AND FIGURES are placed by the layout editors at the
corners of the page to make the format attractive and easy to
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Figure |
A graph of the measured thrust of a D-2 model rocket engine as a
Junction of time. The line drawn is the least squares fit straight
line to the data.
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State  Experimental Theoretical
eV eV
38 5.15+01 5.13
45 1.89+.02 1.93
3P 2.96+02 3.02
Table 1

Energy states found in the numerical search. The accepted
values for these states are also listed.

read. Often a figure is not on the same page as the discussion of
the figure. Each table or figure should be numbered and have a
caption which explains the figure. Readers scan papers by
looking at the figures and data tables before they read the
narrative of the work. Take care to put enough information in the
caption of a figure or table so that the reader can get some feeling
for the meaning of the data presentation. All lines shown on
graphs should be identified, e.g.. "The dashed line is drawn to
guide the eye” or "The solid line is a fit to the data using the Ising
model"

An example of a graph of a set of data is shown in Figure 1. The
graph is sized by the range of data points. The bottom left point
does not have to be the point (0,0). Error bars are shown with the
data points. A graph with all the data points clustered in one
small corner and lots of white space does not help the reader get
a feeling of the dependence of your data. Be careful that the
figures you present are not too busy; too much information on a
figure makes it difficult to pick out the important parts.

NUMBERS AND UNITS Any experimentally measured data
presented in tables (such as shown in Table 1), should include an
uncertainty. You should use scientific notation when presenting
numbers, (7.34 + .03)x107 eV, Take care that you have the
correct number of significant digits in your results; just because
the computer prints out 6 digits does not mean that they are
significant. You should use the MKS system of units.

STYLE Itis often helpful to make a flow chart of your paper
before you write it. In this way, you can be sure that the logical
development of your presentation does not resemble two
octopuses fighting, but that it is linear.

One generally writes the report in the past tense. You already did
the experiment. You also should use the third person neuter case.
Even though you might have done the work by yourself, you use
"we". e.g.. "We calculated the transition probability for..." It is
often confusing when you begin sentences with conjunctions.
Make sure that each sentence is a clear positive statement rather
than an apology.

There are a few words or phrases you should be careful about
using. Fact - this is a legal word. I am not sure what it means in
physics. Proof or prove - These words are meaningful in
mathematics, but you can’t prove something in physics, espe-
cially experimental physics. The purpose of this experiment is...
Often it is necessary to do the experiment to complete the
requirements for your degree. You do not need to discuss the
purposes of the experiment. One can easily show that... - Don't
try to intimidate the reader. What if the reader finds it difficult to
show? Remember that the reader of your paper is a senior in
college! It is obvious that... or One clearly can see.... - Such
statements only intimidate the reader that does not find your
work trivial. What is obvious to someone who has spent a lot of
time thinking about it may not be obvious to the reader of your

paper.
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