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NEUTRON SCATTERING: THE POSCHL-TELLER POTENTIAL

Dan Adrian Mazilu * and Andrei Teodor Filip **
Physics Department
University of Nebraska at Omaha

Omaha, NE 68182-0266
received August 12, 1994

ABSTRACT
In the present paper, the Pauli spinor equations are solved for a neutron beam moving in a spatially
varying magnetic field whose magnitude is determined by the Poschl-Teller potential. Transmission
and reflection amplitudes were calculated and plotted for both spin states in the case of the finite range
potential as well as for the infinite range potential. Spin dependent effects and features manifested in
the special characteristics of the potential are discussed.

INTRODUCTION
Spin dependent effects in the transmissivity and reflectiv-
ity of a neutron beam passing through a constant magnetic
field band were discussed in a previous paper. ! This paper
showed that, contrary to what is expected in a classical
mechanical system, different effects occurred for neutrons
of opposite spins when the magnetic moments were
perpendicular to the external magnetic field. In this paper,
using the analytical potential:

Vix) = Y

cosh’ox W
where U, and o are the parameters of the potential, we
demonstrate that the same effect persists when the mag-
netic field strength is a spatially varying function. This
potential was first introduced by P6schl and Teller 2 to
study the vibrational spectra of polyatomic molecules.
The necessary analytical wave functions for the bound
state (E<0) and the continuous state (E>0) were found in
the classic quantum mechanics text written by Landau and
Lifshitz. 3

Dan is a senior applied physics major at the
University loan Cuza, the oldest university in
Romania. He just finished his senior project and will
graduate by the end of 1995. He plans to pursue his
graduate study in the United States in experimental
solid state physics. Andrei is a junior applied physics
major at the same university. He will work on his
project next summer and will graduate by the end of
1996. This research work was performed during their
stay at the University of Nebraska at Omaha in the
summer semester of 1994. They came to UNO as
exchange students and spent eight months in Omaha.

THEORY AND DISCUSSION
‘We assume a neutron beam emerging from the -x direc-
tion, carrying momentum pointing in the +x direction. The
spin of the neutron is either pointing in the +y or -y
direction (into or out of the page). The neutrons are
traveling , as shown in Figure 1, in a spatially varying
magnetic field given by:
Br)=—Def_ @
cosh”ox
where B, is the strength of the magnetic field, Z is the unit
vector in the z direction and 1/ is the effective range of
the magnetic field.

The kinetic energy, E, of the neutrons is given by:
E = (hk I 3
=Tm ©)
where m is the mass of the neutron and k is the size of the
wave vector. The potential energy, U, of the interaction

between the magnetic moment of the neutron, W, with the
magnetic field, B(x), is given by:

U=-p, BG) where p,=-19150 ()

The negative sign in Equation 4 is due to the special
characteristics of the neutron: the direction of the magnetic
moment was found experimentally to be opposite to that of
its spin angular momentum.

As discussed in a previous paper 1, the spin states pointing
in the +y and -y directions can be expressed as a linear
combination of the spin states pointing in the +z and -z
directions. Thus, in contrast to a classical mechanical
view, the neutrons whose spins are pointing in the +y and -
y directions can have their spin components parallel and
antiparallel to the magnetic field direction (the +z direc-
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tion). Hence, the interaction with the magnetic field B(x)  E <0, so the particle is passing through a potential well

can be written as: instead of a potential barrier, lower curve in figure 1.

Uis(x) = £, - BR) 5) Then, the transmissivity and the reflectivity become:
Therefore, the Hamiltonian operator for the system can be
written as: T S““‘Z(Ea&)

__ K& mB A x m

HlT T m a2 = COS]'IZU.X (6) Sll'lhz{—u—‘) +cos? ) 1- hz pe
The entire scattering experiment can be described by (10)
letting pn B = U, and using the results in Landau’s text 3. x mU,
O\ R

When the incident energy E>0, K:

: k mu,
Fia % ) smhz{iti-.j-)+cos2 (%«, / I—W)

In the case where the spin is antiparallel to direction of the

magnetic field, the incident particle ‘sees’ a potential Here, unlike in Equations 8 and 9, U, is negative. A bit of

barrier as shown in Figure 1 (upper curve). If algebra shows that:
8;;’;" < 1, the transmissivity, 7, and the reflectivity, &, T + R=1, (11)
for the infinite range potential are: flux conservation is guaranteed in both cases.

Most interesting is the case when

: k
_ smhl(%) 8m|y| z
[,_8mU 1+ =2n+1)* ,n=123... 12
Sinhz(ﬂ:a’t)+cos’(% 1__112%1—;] o 7 o? 2n+1),n (12)
en

®) T=1o0 R=0 (13)

cos® (% 1- Jfé-—[i—" ) Thus, for certain values of the depth of the well, the
Ao particles passing over it are not reflected and the potential
k " becomes “reflectionless™ 4. In our case, the complete
sinhl(”'lt ) + cos? e

g(;

e transmission will occur at certain magnitudes of the
magnetic field.

8mU

If

7 > 1, then Tand K become: Interaction
Ao Energy

T - sinhz(l‘a—) Potential

Barrier
smh’{ﬂa—}+ cosh? (“, / Eﬁz c:tz 1 )
&)

omu, -Xo
cosh’( Yol ) ,

smh"( ] + cosh? ( # -1 ) l

When the spin is aligned with the magnetic field, then

Potential
Well

Figure 1
Péschl-Teller potential described by Equation 1. The
finite range potential has the same V(x) when |x/<x,, but
equal to 0 when [x/>X,.
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The presentation in Landau’s text provides us with more Wpx) =e* x>
information that just the wave functions for the infinite (22)
range case. We also can obtain the transmission and Y (x) =e’** x—-oo,
reflection coefficients for a finite range P&schl-Teller When the limits od il i
potential, which is relevant for our purpose. Consider the i LY eL:nn:jaua‘rcl;eve_rs I we gt';a e SHPeE
finite range potential when the magnetic moment is o 5 $Out, Impiying Viet:
parallel to the magnetic field: Ye(x) =V, (-x) (23)

U(x) =— for|x| <x,

cosh’ox
(14)

=0 forlxl X5

where U, = uB > 0 and x, is the range of the potential.
The incident wave, which is coming from the left and
moving to the right, together with the reflected wave
determine the wave function for the region x < -x,:

¥, (x)=e*+Re™ ,
where R is the amplitude of the reflected wave. In the
region x > x,, the transmitted wave is given by:
Y@ =Te*™, (16)
where T is the amplitude of the transmitted wave. The

total wave function inside the region where |x| < x, can be
written as:

(15)

W(x)=A Wp(x) + B ¥ (x) , (17

where

Y0 = (1-87) %=

r{ k_s)(-d+s+1){-%

¥,00=(1-)%

- s 015

)

(19)

and

(20)

F(a,b;c;z) is the hypergeometric function, defiaed as: 5
e a(@+1)bb+1)z2
Fabicz) =1 +80 ; + 2% (c)+ 5) L+.. @)
We(x) and W, (x) were chosen to satisfy the proper asymp-
totic behavior:

It can be shown that wave functions of Equation 19 reduce
to the infinite range case when x, — oo .

To find expressions for T and R , the amplitudes of the
transmitted and reflected waves, in the finite range case,
we used the continuity conditions of the wave functions
and their derivatives zt the boundies (x = +x,). After
tedious manipulations, and making use of recurrence
relationships for the hypergeometric function such as:

4 F@apic)=9EF@+1b+Lic+ 1), (24)
the expressions for the transmission and reflection
coefficients obtained are:

Yo+ OV, w
2;&.:0__~—
T o —ww W 23)
P Y'Y + DO 5
R=¢ VY o0 (26)
where
v =29 Lo
¥ ()= ‘”"‘(") — ik
(27)
by
®,(x )_d ‘(x) +ik W)
®x )-"‘*’f"—sm(x) .
and W, is the Wronskian:
d¥ d ‘P

W) = Pe() L(‘) (x) &) . (28)
The transmissivity, Z, and reflecr.iwty, R, are found from T
and R (Equations 25 and 26) by:

T=|rf R=|rf 29)

It is not obvious that flux conservation still holds in the
case we presented, but we verify it numerically later in the
paper.

If the magnetic moment is aligned antiparallel to the
megretic field, the neutron ‘sees’ a different potential:
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RE&T

De+0

fe+5 2e+5 de+5 dp+s

Magnetic Field (Testa)

Figure 2
Reflectivity, R, (lower curves) and transmissivity, T, (upper
curves) coefficients for the parallel case (or potential well)
as a function of the magnetic field (1 - 40 T). The energy
of the incoming neutron beam is 2.7x10-7 eV and the
characteristic length of the magnetic field is 50 A. The
solid lines are for the infinite range potential while the
dashed ones are for a finite range of 200 A. The
oscillatory behavior of the coefficients is evident.

Un)= —2s

e for|x| <x,

(30)
=0 for|x| >x, ,

where U, = 1,B, > 0. The same analysis can be performed
for the antiparallel case, except that _

\
=] 8mU, 8mU,
S—i(+1+ 1- PO j when P <1l (31
or
s=1[-1 7m0, | when 87Ve st (3
=g{-1+ hzaz—Jwenhzazb-.()

Therefore, the results are the same as those shown in
Equations 18-20 with the values of S replaced.

NUMERICAL RESULTS
Computer programs were written to generate data and
graphs for the various reflectivity and transmissivity
coefficients as a function of the magnetic field for both
spin states. In Figure 2, we observe very prominent
oscillations in the transmissivity and reflectivity coeffi-
cients for the antiparallel case (potential well) for both the
finite and infinite range P&schl-Teller potentials. The

magnitudes of these oscillations are proportional to the
magnetic field strength. In Figure 3, using the same set of
parameters, we show that for the infinite range potential,
the transmissivities and reflectivities for the parallel case
(potential barrier) vary monotonously with the strength of
the magnetic field. Even though it is not obvious, we
found that the numerical values of 7 and R in Figures 2
and 3 always added up to unity, a fact that ensures the flux
conservation.

The characteristic length of the potential, 1/ct, was chosen
to be 50 A, roughly the size of a flux vortex in a high
temperature superconducdtor. To enhance the oscillatory
features in the transmissivity and reflectivity coefficients,
the kir.etic energy of the neutron beam was chosen to be
2.7x10-7 eV, the same order of magnitude as the potential
energy of the particle in the magnetic field. A neutron
beam with such a low kinetic energy is practically impos-
sible to achieve in an experiment. Even if we reduce the
width of the magnetic field distribution to as little as 1 A
and increase the magnetic field up to 3x104 T, about 100
times larger than the highest magnetic field produced in
the laboratory, the kinetic energy becomes only

7.5x10+4 eV. In view of this situation, unless we can
increase the magnetic field and discover a light neutral
particle with a giant magnetic moment, the scattering

R&T

T T T T T
1e+5 2e+5 3e+5 4e+5 5e+5

Magnetic Field (Tesla)
Figure 3

Reflection (lower curves) and transmission (upper curves)
for the antiparallel case (or potential barrier) as a
function of the magnetic field (1 - 40 T). The energy of the
incoming neutron beam is 2.7x107 eV and the
charecteristic length of the magnetic field is 50 A. The
solid lines are for the infinite range potential, while the
dashed ones are for the finite range. Notice the difference
in behavior between the finite and infinite range
potentials.

De+0 Be+5

S e ————— R ————
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experiment will remain ‘gedanken’.

In Figure 4, we present a three dimensional plot of the spin
parallel reflectivity as a function of the kinetic energy and
the magnetic field strength. The results show the existence
of the reflectionless regions in the case of the finite range
Poschl-Teller potential, regions similar to those described
by Equations 12 and 13 for the case of the infinite range
potential.
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STATISTICAL ANALYSIS OF THE 12C(13C,0)21Ne NUCLEAR
REACTION

Michael T. Nimchek and Amy Snyder Hale t
Department of Physics
University of Richmond

Richmond, VA 23173
received August 1, 1994

ABSTRACT
Complete differential cross sections for the 12C(13C,0)21Ne reaction were taken at laboratory bombard-
ing energies ranging from 15.250 MeV to 17.875 MeV. To determine if ‘nuclear’ molecules are
formed in these collisions, the data were subjected to statistical tests to filter out true resonances from
background reactions. The autocorrelation function, Y, analysis, angular cross correlation, probabil-
ity distribution and the summed deviation function were used. The results of the analysis indicate a
significant direct component and a strong possibility of resonance.

INTRODUCTION
Prior to 1960, it was assumed that when heavy nuclei
collided, one of two things would happen. The nuclei
could collide head on and form a state known as a com-
pound nucleus. This is a thermally equilibrated state
where the kinetic energy of the collision is evenly distrib-
uted among all the nucleons. Otherwise, the ions would
graze each other and the nucleons interact only peripher-
ally, in a manner similar to elastic scattering. A theoretical
model , the statistical model, describes the formation of the
compound nucleus, while the Born approximation de-
scribes the peripheral scattering.

Michael Nimchek is a senior mathematics and
physics major at the University of Richmond. He
participated in the statistical analysis of these data
during the summer following his first year. He is
currently applying to graduate school in mathematics
and is completing an undergraduate thesis in complex
analysis. In his spare time, Michael enjoys studying
Any Rand’s philosophy of Objectivism.

Amy Snyder received her B.Sc. in physics from the
University of Richmond in 1993 and her M.Sc. in
physics from the University of Pittsburgh in August of
1995. She is currently working on her Ph.D. in
planetary science. Her research is conducted at
Pittsburgh's Allegheny Observatory under the
direction of George Gatewood. When she has time
away from the rigors of graduate school, she shoots
her rifle competitively.

For some reactions these models fail because a third
possibility arises. The nuclei don’t collide head on, yet the
collision brings particles close enough for the strong force
to overcome the electrostatic repulsion. The nuclei spin in
a dumbbell configuration with a large angular momentum
before decaying. Such a system is called a nuclear
molecule. It was first observed in the collision of low
energy 12C nuclei. 1 Since the behavior of nuclear
molecules deviates from statistical model predictions, such
behavior has been dubbed non-statistical or direct. This
paper concentrates on the various statistical tests used to
determine if the reaction behaves statistically (according to
the statistical model predictions of the thermally equili-
brated state) or if it has a direct component that would
indicate the formation of nuclear models.

THE EXPERIMENT
A 13C beam and a 12C target were used to determine if,
despite the addition of a valence neutron to the 12C core,
similar results would be obtained. Our experiment
detected decays of 25Mg (the intermediate nucleus formed

Excitation Energy in 21Ne (MeV)
ground state 0.0
excited state 0.351
excited state 1.746
multiplet 1 2789 2796 2.866
multiplet 2 3662 3734 3.883
multiplet 3 4432 4524 4684 4.726

Table 1

Excitation energies of states and multiplets in 2INe.
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in the 12C + 13 C collision) to 21Ne + ¢ Full angular
distributions were measured at about 170 angles at 125 R(Te) = (0(5) O’(E+€)) 3)

keV or 250 keV intervals across a laboratory bombarding
energy range of just over 2.5 MeV. Three resolved states
and three multiplets in 21Ne were measured. The excitation
energies shown in Table 1. The energy resolution of the
experiment was not sensitive to the small energy differ-
ences between the states in the multiplets.

STATISTICAL ANALYSIS
Direct behavior is difficult to detect because true reso-
nances must be distinguished from statistical fluctuations.
One of the signatures of resonant behavior is a large direct
component in the cross section that is due to a mechanism
different from emission of the o from a thermally equili-
brated compound nucleus. Hence, the average behavior
can be examined for resonances against a fluctuating
background. The autocorrelation function and the prob-
ability distribution of cross sections use this method to
determine the direct component of the reaction.

Another signature for the formation of nuclear molecules
is correlations among different final states in the exit
channels. A feature observed in the exit channels would
be caused by a resonance in the entrance channel. The
summed deviation function measures this behavior.
Finally, one expects that if the cross sections are domi-
nated by a direct component, only a few large angular
momenta should contribute since the reaction would be
peripheral in comparison to what would be expected under
thermal equilibrium. The coherence angle obtained from
the angular cross correlation is used in this test. 2

Coherence angle

The coherence angle, C(6,0) determines the average
number of angular momenta contributing to the rezction.
According to the statistical model, a wide range of angular
momenta should contribute. 3 Thus, a low number would
suggest a non-statistical component. To extract the
coherence angle, one must first determine the angular
cross correlation function for a particular final state. The
cross correlation function is defined as:

(o(E.0) o(E9)
C e|9 = _1 ]
R =) (oE)

where o(E,0) is the differential cross section at energy E
and angle 6. 4 The bracket notation denotes the standard
average. The differential cross section is proportional to
the probability of detecting an event. The coherence
angle, B¢, is equal to half of the maximum value of the
angular cross correlation function and is inversely propor-
tional to the number of contributing angular momenta, Al:5

(6]

) . .
Al= 6 ° 2)
Autocorrelation function

The auto correlation function determines the coherence
width that is used in subsequent analysis. It is defined by:

c@)oEre)

where o(E) is the total cross section at a bombarding
energy E for a given final state (the result of integrating
the measured differential cross sections over all angles), €
is the energy interval and I is the coherence width of
levels in the compound nucleus. 2 The autocorrelation

function can also be calculated by:
Yﬂx
R =K
@) r’+e2 Ne @

where N is the number of open channels contributing to
the reaction and Yp, is the portion of the cross section due
to non-statistical mechanisms in this energy range. 2 The
number of open channels has a minimum possible value of
unity (at 0°) and at 90° attains its maximum value:

%- [g evcn)

e = & 71 (g 0da)
&)

g=Qi+)A+D)2'+ )2 +1),

where i is the spin of the target, / is the spin of the
projectile, i and I are the spins of the o and 21Ne frag-
ments. 6 The direct component of the cross section, Yo
can be determined by letting € = 0 in Equation 4: 4

Yor=[1 ~Ne RO . ©)

The uncertainty in ¥Yp, is calculated using the uncertainty
in the mean square deviation of the autocorrelation
function with€ = 0:

AR(T0) =/ L2RT0) RO | )

where n is the number of data points in the sample. 2 The
uncertainty Y, is:

AYpe _ __ AR(T0)

o : 8
Yor " 2[1-R@0)] < !
Yp, Analysis C(6,0) Analysis 3
state Nk value AY, | Al
(MeV) max  mean min D
0.0 9 94 98 i |s0
"10.351 .89 94 98 A3 |50
1.746 73 .86 97 14 | 6.7
2.789-2866 .95 97 99 A3 | 45
3.662-3.883 92 95 99 A3 |55
4432-4726 89 .94 98 A3 | 6.7
Table 2

Non-statistical component and contributing angular
momenta for the 12C(13C,a)2INe reaction
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The Yp, analysis gives a range of percentages that
depends upon the number of open channels involved. The
minimum number of open channels corresponds to the
highest possible direct component, while the maximum
number of open channels corresponds to the lowest
possible direct component.

Probability distribution function
The probability distribution function is a method of
comparing the distribution of the angle integrated cross
sections and the results of the Yp‘ analysis with statistical
model predictions. One plots a histogram of the cross
sections against the normalized probability curves deter-
mined by the values of ¥, . The quantity Yx (not to be
confused with ¥,,_ ) is determined for each energy by
integrating the differential cross sections to yield a total
cross section x(E) for a given final state. 2 The value of
Yk is given by:

= 0 ©

(Gx(E))

where K refers to the different final states and multiplets in

21Ne. The equation for the normalized probability
distribution curve is:

g -1

N [N;Yx
1-Y, |T-Y,
p(Ye) = ;
N [Y‘YD‘]

Dx

2N, (1*,,}3,“)ii

Ne 2t Yor 10
P ~Ne 1oy, [T\ T, » (10)

where Nk is the number of open channels, and /y, , isa
hyperbolic Bessel function of the first kind with order
Nx—]. 3!7

Summed deviation function

The final statistical test used in this paper is the summed
deviation function. It is used to find energy regions that
deviate substantially from the average cross sections.
Such areas indicate the possibility of correlated behavior.
Correlations that are measured in the exit channels would
be caused by a resonance mechanism in the entrance
channel. The deviation function is:

ox(E) -1,
(G.K(E)>

where N is the number of excitation functions (six for us:
three resolved states and three unresolved multiplets). 2
Note that the deviation function represerts an excursion
about the average cross section. To determine what
constitutes a “substantial” enough deviation from the
average to be considered significantly correlated, the

DE) =3 & ()

probability density function for the deviation, D, was
calculated using the relationship:
1 -N .14 (Yor B
p) =’EJ [f” ']“0[1‘ W fepom ‘]"‘
iy o A
=1- 12
E=1-jt NN, (12)

where j is the square root of -1. The probability density
function, p(D), provides a quantitative measure of the
likelihood of a given measured deviation, D. Confidence
levels, Q(x7) and Q()s), must be extracted for this purpose
corresponding to the percentage of data points that should
be greater than 7 or less than xp according to the rela-
tions: 8

o= [ p0)a>
ir
13)
0w = [ p0yaD .

RESULTS
Table 2 lists the results of the angular cross correlation
function analysis for each final state. There are 4 to 7
angular momentum values, Al, contributing to the different
final states. A reaction behaving according to the statisti-
cal model predictions should have 10 or more contributing
angular momentum values. 9 These lower numbers
deviate from the predictions of the statistical model and

171[!!11"|1|-r]v13i_

NUMBER OF OCCURRENCES
-
|
B = ;
:. ) ~T::.,\_1
—
TR

Yo, = 95
RY 4
T PR (IR 0 [ e =t
0.5

| 15 2

| s I

o

Y
Figure 1

Histogram plot of the distribuiton of cross sections (Yx)
for the second multiplet state. Probability curves are
plotted for comparison. The solid curve corresponds to
Ype = 0.95 while the dashed curve corresponds to

Ype = 0. The error bars represent the statistical
uncertainty in the histogram due to the small number of
data points.
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suggest the presence of a direct mechanism.

Also listed in Table 2 are the results of the Y, analysis
for the six energy states and multiplets. Three different
values of Nk are calculated corresponding to the minimum
Nk =1, the maximum N and the average of these values.
Notice that the lowest ¥),  value occurs in the second
excited state and is still greater than 70%. No other value
drops below 85% and most are above 90%. This result
implies that most of the cross section is not from the decay
of a thermally equilibrated compound nucleus. There is a
significant direct component in all the exit channels.
Taking the lowest value of ¥, in each state and subtract-
ing their respective uncertainties still yields values ranging
from .59 to .82 Even this ‘worst case scenario’ still
corresponds to a large direct component. These results do
not prove the existence of nuclear molecules, but they do
mean that a mechanism different from the formation of a
thermally equilibrated compound nucleus is at work.

Figure 1 is a histogram of the frequency of the Yk values
for the second multiplet. The results for this state are
representalive of all six final states and multiplets. The
curves in Figure 1 were created by letting Y, bea
dummy variable in Equation 10. Two Y,_ values were
used to create the two different curves. The solid curve
represents the calculated Y, value that corresponds to the
mean value of Ng. The dashed curve represents a statisti-
cal model curve, calculated by letting ¥, go to zero. The
solid curve, which represents a ¥, of 0.95 fits the
histogram much better than the dashed curve which
represents a purely statistical mechanism. This furtker
supports the existence of direct behavior. There is,
however, an inherent ambiguity in the analysis because of
the limited number of data points. Each point has an

D(E)

PSP PSPPSR [VEMEENE] (STEPEPTIL BRI e
15 155 16 165 17 175 1€
Ejop(MeV)
Figure 2

Plot of the summed deviation function versus center-of-
mass energy. Confidence levels of 3% and 1% were
calculated using the probability density function.

uncertainty of 712 where n is the number of Yx counts
corresponding to that individual point. The bins only have
counts between 1 and 4; these low numbers reflect high
uncertainties, but the results are consistent with the results
of the other tests.

Figure 2 is a graph of the deviation function versus energy
with 3% and 1% confidence levels calculated from the
probability density function given by Equation 12. There
are 16 points, corresponding to the sixteen different
energies, Three percent of these points, or about half a
point, should lie above or below the lines if the reaction is
a statistical one. We observe three points in this range.
Even more important is that two points also lie outside of
the 1% confidence level, where the expectation determined
by the statistical model is essentially zero. This tests
po.rts to the existence of correlated structure in the
12C(13C,0)21Ne reaction,

The results of our statistical analysis point to the probable
existence of nuclear molecules in the 12C + 13C system,
The results indicated a significant direct component to the
12C(13C,0)21Ne reaction. The Y, analysis quantified this
direct component as always greatcr than 70% and usually
greater than 90% with an uncertainty of 13%. The results
from the probability distribution function favor the non-
statistical curves. The deviation function indicates strong
correlations that deviate sharply from the behavior of a
thermally equilibrated compound nucleus. The angular
cross correlation function indicates that a smaller number
of angular momentum values are present in the reaction
than would be expected according to statistical model
predic‘ions. Based on these statistical results, we conclude
that"he 12C(13C,o)21Ne reaction exhibits a substantial
direct component that is correlated in many final states,
These results are consistent with the formation of nuclear
molecules.
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THE DIRECTIVITY PATTERN OF A PLANE CIRCULAR DIELECTRIC
TRANSDUCER
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Department of Physics and Astronomy
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received August 15, 1994

Abstract
Two methods of measuring the directivity pattern of an acoustic transducer are presented, along with experimental data.
The first method involves measuring the root mean square voltage from the microphone using a digital oscilloscope and
then converting the resulting averaged value to decibels. The second method uses a dynamic signal analyzer to sweep
the specified frequencies for a more detailed analysis. The directivity patterns produced are then compared to that of a

theoretical infinitely baffled circular piston.

INTRODUCTION
From acoustical theory we know that at low frequencies,
speakers act like point sources, radiating sound in all
directions equally. But as the frequency increases, the
pattern of the intensity of sound in front of the transducer
becomes beamed, even exhibiting side lobes. Figure 1
shows a graph, called the directivity pattern, of this
intensity as a function of angle from directly in front of the
transducer. The graph is assumed to be radially symmetric
on the axis of the speaker.

The frequencies at which these effects can be seen are
different for speakers of various diameters, so to provide a
common basis for comparison between each speaker we
must introduce the scaling parameter of ka:

2nf

ka=2Eqa="TL g, 1)

where a is the radius of the transducer, | is the wavelength,
fis the frequency, and c is the speed of sound in air. The
“Mother of All Speakers” at the University of Mississippi
(diameter 2 m) has same directivity pattern as a hearing
aid (diameter of 3 mm) at the same values of ka, provided
the structures of the two transducers are roughly the same.

David Coppit graduated in May of 1995 from the
University of Mississippi with Bachelor of Science
degrees in both Physics and Computer Science.

When he has it, he likes to spend his free time playing
the guitar or shooting baskets. One day, he would
like to walk the moon in the comfort of his living
room,

In our tests, we used a circular dielectric transducer which
consists of two plates acting like a capacitorl- The plates
were made of aluminized mylar stretched across the
surface and grounded to the outer casing with silver paint.
One of the plates was held immobile. When an alternating
voltage was applied across the two plates, the other
moved and creates sound waves. The mylar, a dielectric
material, is compressed into infinitesimal air pockets on
the surface of the back plate when the transducer is
operated. Figure 2 is an illustration of a cross-section of
the transducer.

The sound levels were measured using a Bruel & Kjaer
condenser type microphone, structurally similar to our
speaker2. A thin membrane, comprising one plate of a
capacitor (a back plate is the other), moves with the
incoming sound pressure and creates a change in capaci-
tance. Even though the condenser microphone is not
exceptionally sensitive, it is popular because of its flat

Figure 1
Polar plot of the intensity of an infinitely baffled circular
piston with a ka value of 10.
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Figure 2
Cross-section of the mylar transducer

frequency response and low self-noise.

THEORY
To polarize the transducer for proper operation, a bias
voltage V,, is applied across the “plates”. A large resistor
is placed between the back plate and the vibrating mem-
brane. This causes the charge on the plates to be unable to
change fast enough to respond to the rapidly varying
alternating voltage placed across the plates. If we assume
the average charge, Q,, on the plates:

Qo =CoVo , 2
then the alternating voltage, V, required to vary the
capacitance and cause a resulting movement in the
membrane is:

V=v,-Tge 3)

u:::\

—]

Figure 3
Set up for measuring directivity. The transducer, detailed
in figure 2, is in the center, the microphone on the right.

where C is the capacitance of the system. A more rigorous
examination of the problem can be found in many texts3.

The directivity of a plane circular piston in an infinitely
large rigid wall (a baffle) is produced by diffraction
effects. The optical analog is a plane light wave passing
through a circular aperture4. The resulting sound pressure
at a given field point in front of the speaker can be
calculated by considering the surface of the speaker to be
composed of many small elements, each oscillating with
the same phase. The contribution of the pressures from
each of the elements are summed in magnitude and phases.
The resultant pressure as a function of distance and angle,
q, from the axis of the piston is the directivity equation:

_2J, (ka sin 0)
I==fasme @)
where J; is the cylindrical Bessel function of order 1.

EXPERIMENTAL SETUP
The measurements were made in an anechoic chamber to
avoid extraneous noise and to minimize reflected sound.
The transducer was placed in the center of a wheel that
could be rotated to allow for measurement of the intensity
level at various angles. The microphone was placed in
front of the speaker and aimed using its reflection in the
aluminum surface. This set up is schematically shown in
Figure 3. For the particular speaker we used, an alternat-
ing voltage with amplitude of 100 Volts, along with a 200
Volt DC bias, was applied to create the sound.

The first method of measurement consisted of sending a
five cycle pulse at a particular frequency to the speaker.
The voltage produced by the microphone by the middle
three cycles were averaged for about thirty seconds before
the rms voltage was measured with the digital oscillo-
scope. The frequency of the pulse was then manually
adjusted to produce several different ka values. The
wheel was rotated and the procedure repeated.

Measured directivity values for four different values of ka.
The solid lines are theoretical predictions from Equation 4.
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Because the same microphone was used in all the measure-
ments, its frequency response and that of the source were
divided out when the voltage values were normalized.

' This meant that the voltage is a direct indicator of the
sound pressure level (SPL):

H spL =201og - ). )

The second method again used the same wheel arrange-
ment for the speaker. Instead of pulses, the signal driving
the speaker was a continuous tone ramped through a range
of frequencies created by a signal generator operating in its
swept sine mode. This eliminated the manual adjustment
of the frequency, thus speeding up the data taking process.

RESULTS
Figure 4 shows results for values of ka =1, 5, 8, and 10.
Also shown are the theoretically calculated directivities for
an infinitely baffled circular piston. This model seems to
fit the data, except near 90°. At this angle, (except for the
ka = 10 data which doesn’t exhibit this since its values go
to zero at 90°) there seems to be less signal . All values
were normalized to 40 dB at zero degrees.

The sweeping method provided many more measurement
points that the first method of data collection. In this case,
we were able to create a three dimensional graph of the
intensity. Figure 5 shows such a plot. The major peak
corresponds to the point directly in front of the speaker.
For a given frequency, the maxima and minima for the
corresponding ka can be observed. For this transducer, a
change of 2951 Hz corresponds to a change of ka =1.
This means that the graph ranges from ka = 1 to a value of
ka = 13.6. The noise seen in Figure 5 is caused by the lack
of averaging in this method, the trade-off was to get more

Figure 5
Intensity vs frequency and angle. These are the results
from the second method of data collection.

Cscilloscope Method

i
= Anclyzer Method
—— Piston Theory

‘et 10 20 30 40
ka=10

Figure 6
Comparison of the two methods of data collection for two
different values of ka.

data points for less sampling time. Note the migration of
the nodes toward the center as the frequency increases.

Figure 6 is a comparison of the two techniques for ka = 8
and ka = 10. The method using the sweeping frequency
does not seem to display the pronounced decrease in
intensity at the sides that the oscilloscope method does.
However, both methods exhibit a signal drop at the sides
of the speaker, 90 off axis. This implies that in this
region, the dielectric transducer’s behavior departs from
that of the theoretical infinitely baffled piston.

The sweep method data does not seem to follow the ideal
calculations as well as the averaged data. Conceivably, the
same kind of accuracy as in the oscilloscope experiment
could be achieved, but 30 seconds per frequency for 10
frequencies per sweep and a 3.75 degree interval translates
to a measuring time of over four hours.
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Abstract
Traditionally, Bragg scattering has been used to study crystals with x-rays where the wavelength and
the intermolecular distances are measured in Angstroms. It is our goal to scale up this phenomenon
into the centimeter range through the use of ultrasonic acoustic waves and an array of steel bars. In
this case, the scattering is two-dimensional instead of the three-dimensional case of atoms in a crystal.
We experimentally show that Bragg’s Law of scaitering also holds for reflection of acoustic waves.

INTRODUCTION
Bragg scattering results when a uniform wave front strikes
an evenly spaced array of scatterersl. According to
Huygen’s principle, each member of the array emits
wavelets, which add up constructively to form outgoing
waves. Figure 1 illustrates this concept, where the
scattering centers struck first by the wave radiate first.
The larger circles are wavelets that have had time to
propagate. The distance between wavelets shown in
Figure 1 is one wavelength. The ray diagram, part of
Figure 1, shows the resulting paths of the waves.

The intensity of the reflected wave exhibits constructive
interference when:

2dsin(@)=nA )]
This is known as Bragg’s Law2, where d is the spacing
between scattering centers, 8 is the angle from the surface
of the array for both the incoming and outgoing waves, n
is a positive integer, and A is the wavelength of the
incident wave. As the wave penetrates the array, subse-
quent rows of scattering centers also radiate causing more
than one maximum. For optimum Bragg scattering effects,
the spacing d between the scatterers should be on the same
order of magnitude as the wavelength of the source of
waves.

David Coppit graduated from the University of
Mississipi with bachelor of Science degrees in both
physics and computer science. When he has it, he
likes to spend his free time playing the guitar or
shooting baskets. One day, he would like to walk the
moon in the comfort of his living room.

Bragg scattering of X-rays, with wavelengths in the
Angstrom range, from crystals is typically used to get
information about the crystal structure. Another place
where Bragg scattering can be observed is in ultrasonic
waves in liquids. A transducer is placed on one side of a
crystal or a liquid. The ultrasonic waves created by the
transducer will generate pressure gradients in the medium
that scatter the incident light. This type of diffraction is
useful for imaging small objects placed in the ultrasonic
beam. The entire image can be seen in the resulting orders
of the diffracted beam.

EXPERIMENTAL SETUP
The experimental set up is shown in Figure 2. Our
scattering centers were a 10 X 10 array of 1/4 inch bars,
suspended at 1 inch intervals between two metal plates.
They were hung in an anechoic_chamber to isolate the
experiment from extraneous noise.

Incoming Plunar )
Waveflroat %Wﬂl

VA
-

Figure 1
Bragg scattering from a two-dimensional array, showing
the wavelets on the left and the ray diagram on the right,

T
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Figure 2
Experimental setup. The diagram on the right is a top
view of the setup showing the angle 0

The incident waves were generated using a dielectric
capacitor transducer3, Ata frequency of 29.5 kHz (ka =
10), and 30 inches away, this speaker generates a wave
front that is uniform in intensity to within 3 dB over a ten
inch span. Since the array is ten inches wide, this trans-
ducer effectively generates a plane wave. The speaker was
aimed so that it pointed at the center of the first row of
scatterers. A Bruel and Kjaer 1/4 inch microphone was
aimed at the same location.

To produce the maximum Bragg scattering conditions, we
drove the speakers at 13.5 kHz. At this frequency, the
wavelength of the incident sound wave is approximately
equal to the spacing between the scattering centers.

During the experiment, the intensity at various angles of
scattering was examined by moving the microphone and
speaker and recording the rms voltage produced by the
microphone. This value was converted to dB (using a
reference voltage of 1 volt) with

SPL =20 1og(vi). o)

ref

The speaker was set up to send tone bursts of five cycles at
the specified frequency. Pulses were used so that the
direct wave coming from the source would not interfere
with the reflection from the array. Some angles (0 less
than about 30 degrees) at low frequencies could not be
resolved because the distance from the speaker to micro-
phone was almost the same as the distance from the
speaker to the array to the microphone; the direct and the
reflected waves were interfering.

The voltage produced by the microphone due to the
reflected wave was averaged for 30 seconds. The first
“start-up” cycle was discarded and the rms voltage was
measured over the length of the remaining wave.

270
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Figure 3

Relative intensity as a function of scattering angle for
different frequencies. The Bragg peaks are not evident at
low requencies.

RESULTS
Two separate trials were made. The first one investigated
the response at four different frequencies. The two
frequencies that yielded good results were then investi-
gated in more angular detail. Figure 3 shows the results of
the first run. The Bragg scattering model seemed to
describe higher frequency results the best. These data
meet the condition that the wavelength be comparable to
the spacing between scatterers. The lower frequencies had
wavelengths that were too long to create the Bragg

scattering peaks.
29 [
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Figure 4
Relative intensity as a function of angle. The top set has a
coarser angular resolution than the bottom set.
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Figure 4 shows the comparison between the results of the
more detailed second trial and the first. The vertical marks
are the angular location of the theoretical maxima com-
puted from Equation 1. 10 dB was added to the 29.5 kHz
data to make the graph more readable. (The angular
coincidence of the maxima is the important factor, not the
intensity values). We get at least one good correlation at
the expected angle for the 29.5 kHz frequency. The left-
most theoretical peak for the 29.5 kHz graphs occurs near
the angle where the interaction between the direct and the
reflected waves occurs. The large angle intervals between
data points in Trial 1 make it possible that what appears as
an upward trend toward a maximum is actually a bad
value.

There are two peaks in the 23.6 kHz data that correlate
with the expected Bragg peaks. However, the data exhibit
maxima about 5 degrees less than expected. One explana-
tion could be that the edges of the supporting plates are
reflecting sound that interferes with the signal from the
array. This effect may be greater at this frequency than at
29.5 kHz, resulting in a shift in this data alone.

The abnormal results in all the data for angles above 65
degrees may be a consequence of interference of the
reflected wave. At these angles, the speaker and micro-
phone are close together. The returning signal from the
array may be striking the source, causing subsequent
reflected waves.

SUMMARY
The Bragg scattering phenomena is not restricted to atomic
sizes. With the use of sound waves and steel bars, it is
possible to create the effect macroscopically.

This experiment focused on detecting the reflected waves.
But this is not the only type of Bragg scattering. The
waves penetrating to subsequent levels of scatterers also
create maxima and minima on the far side of the array.
Preliminary experiments have not produced positive
results. Part of the problem is that there is some ambiguity
as to the location of the vertex with which to measure the
angles of the maxima.
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ABSTRACT
Low voltage scanning electron microscopy and atomic force microscopy were employed for the
microscopic examination of two human kidney stones to determine the mechanism of nucleation and
growth. High magnification of the stone’s surfaces suggested that the stones were not a single crystal

but an aggregation of many small crystals.

INTRODUCTION
Kidney stones are a common urinary tract disorder that
occurs primarily in middle aged men in developed
countries. 1 When the stones are dislodged, passage
through the ureter results in considerable pain. Kidney
stones range from round structures a few millimeters in
size to large staghom shaped calculi which remain lodged
in the kidney. There are many different types of stones
that form in the human kidney: weddellite (calcium
oxalate dihydrate); whewellite (calcium oxalate
monohyrdrate); apatite; brushite and uric acid. 2.
Weddellite and whewellite stones tend to be the most
common.

The fundamental mechanism for the formation of kidney
stones is not fully understood. Certain people are stone
formers and others are not. Supersaturation of calcium
oxalate ions in the urine is a necessary precondition for
stone formation.3. Nearly all urine is supersaturated with
respect to these ions, so other explanations are needed.
Two main mechanisms for the formation of kidney stones

Hamilton graduated from Arizona State University
(ASU) in May of 1995 with a B.Sc. degree in physics.
This reserch was performed during the summer of
1994 when he worked as part of a NSF sponsored
research program at ASU. He is currently working as
a Device Quality Engineer for Motorola in Chandler,
Arizona. In his spare time, he can be found spending
time with his lovely wife and two daughters. In
addition, he enjoys hiking, hunting and avoiding his
next kidney stone.

have been advanced: kidney stones are formed primarily
due to crystal growth 4; the stones are formed by aggrega-
tion of many small crystals that are held together by an
organic matrix 56. The primary objective of this paper
was to use low voltage scanning electron microscopy
(LVSEM) and atomic force microscopy (AFM) to gather
microstructural evidence to determine which mechanism is
the most likely to cause kidney stones.

EXPERIMENTAL METHOD
Two whewellite stones were used in this study. One of the
stones was a fragment and the other a complete stone.
Both stones were cut using the ultramicrotomy technique.”
The complete stone was polished to the nucleus and then
microtomed to assure as flat a surface as possible for good
imaging on the AFM and scanning electron microscope
(SEM). An optical microscope was utilized to provide a
better understanding of the appearance of the two stones
under a range of different magnification and for naviga-
tional purposed in the LVSEM.

The stones were placed in beam embedding capsules, size
00 for the fragmented stone and size 3 for the complete
stone. L.R. White Acrylic Resin Hard Grade was poured
into the molds to embed the stones. The encapsulated
stones were placed in a curing oven at 100 C for approxi-
mately 4 hours. After the epoxy had cured, the molds were
removed from the embedded samples with a razor blade.

The complete stone was then polished using 12 pm and 3
um aluminum oxide polishing paper. The polishing was
stopped at frequent intervals to examine the surfaces with
an optical microscope to determine if the nucleus had been
reached. This could be monitored by noting the shape of
the concentric rings surrounding the niucleus, 8
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Figure 1
Optical image of the embedded fragmented stone studied
in this work.

Once the nucleus was reached, the fragmented and
polished complete stone were microtomed. To make the
samples as flat as possible, the stones were first cut by a
glass blade on the microtome machine until the surfaces of
the stones were level. Then a diamond blade was used to
remove several more microns to make the surface
smoother. At the completion of this process, the excess
epoxy from the molds was removed using a saw machine
with a diamond saw blade. The excess epoxy was
trimmed approximately 1.0 mm from the microtomed
surface to allow the embedded samples to be mounted in
the LVSEM and AFM. ¢ Once the excess epoxy was
removed, the samples were placed under an optical
microscope to obtain an image for orientation of the
microtomed surface in the LVSEM.

The stones were then taken to the University of Arizona
Field Emission SEM facility to obtain multiple images at
different magnifications. The magnification was limited
by the residual charging. Low voltages were used o
assure limited static charging of the specimens. The
voltage that produced the best results was 2.5 kV. Using
the capability of low magnification on the SEM and the
optical images, navigation around the surface of the stone
could be accomplished; many different parts of the
surfaces could be viewed at different magnifications. This
technique provided a good view of the morphology of the
complete surface of the stones.

The stones were then taken to the Arizona State University
AFM facility where images at several different resolutions
were obtained. 10 The images were made using the contact
mode. The AFM was capable of two different ranges of
resolution: one head for 150 pm x 150 pm to 10 pm x 10
um and another head for higher resolution. Both heads
were used in this experiment. The higher resolution
images were of more interest in determining the micro-
structure of the surface of the stones. The lower resolution

———————————————————————————————————————————————————————————————————————————

images provided evidence that the structures seen at higher
magnifications were part of the surface morphology.

Figure 1 shows an optical image of the fragmented pie
shaped embedded stone. At the wider end and in the
middle of the stone, marked by arrows 1a and 1b respec-
tively, the structure appears as if it were formed by crystal
growth. However, in the smaller section of the stone,
marked by arrow 2, it is not apparent that crystal growth
has occurred. The stone is not uniform in its morphology
since the larger part of the stone and the smaller part differ.

The LVSEM image of the same stone is shown in Figure
2a. An apparent crystal growth at the top of the image is
marked by arrow 1. The low magnification did not allow
us to determine if the stone is a solid crystal. Behind the
visible structure, marked by arrow 1, plates of stone are
noticeable. The plated structures have been seen in
previous experiments on kidney stones. They are indica-
tive of aggregation. 6 The LVSEM image shown in Figure
2b provide stronger evidence that this specimen was

Figure 2
LVSEM image of the embedded fragmented stone at 2.5 kV
a) magnification of 11 kX. b) magnification of 1 kX
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formed by aggregation of many small crystals. The
collection of many small crystals in this image indicate
that crystal growth is not a likely explanation of the
formation of the stone. The AFM images, seen in Figures
3a and 3b are consistent with these findings. Figure 3a
shows common of aggregation. The arrows 1a and 1b
mark places on the right side of the image where indi-
vidual crystals are randomly gathered.

The lack of uniformity in the morphology of the complete
image shown in Figure 3a is notable. It provides further
evidence that this stone is made up of small crystals, held
together by some adhesive agent. In Figure 3b, a higher

4,00
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1.50
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Figure 3 b

AFM image of the embedded fragmented stone. Arrows la
and 1b show collections of single crystals. a) 4 pym
resolution. b) 1 pm resolution.

Figure 4
Optical image of the complete embedded stone studied in
this work. Arrows 1 and 2 indicate concentric rings and
radial striations repsectively.

1. K Ewﬁﬂ

Figure 5
LVSEM image of the complete stone at 2.5 kV. a) 600 X
magnification. Arrows la and 1b mark the concentric
rings. b) 11 kX magnification.
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Figure 6
AFM image of the complete embedded stone a) 2 jim
resolution. Arrows la and 1b show local crystal structure.
b) surface image at 1.5 um resolution.

resolution image, the randomness of the crystals becomes
more apparent. Arrows la and 1b indicate regions where
the sizes of these crystals are more noticeable. The
average size of the crystals sown in Figure 3b is approxi-
mately 200 A.

An optical image of the complete embedded stone is
shown in Figure 4. This figure displays concentric rings,
marked by arrow 1, and radial striations, marked by arrow
2, surrounding the nucleus. In Figure Sa, these concentric
rings, marked by arrows 1a and 1b, are even more appar-
ent due to the higher magnification. It has been argued
that these concentric rings accompanied by radial striations
represent successive stages of growth or aggregation. 6

Figure 5b is an LVSEM image of the vicinity of the
nucleus shown in Figures 4 and 5a. There appears (o be no
aggregation of crystals in this image, perhaps due to the
low resolution of the image. The image does show
porosity and some randomness in the morphology of the

surface of the stone, possibly indicating that the stone is
not a complete crystal. Crystal growth cannot be totally
ruled out due to some of the uniformity of the
mircostructure of the stone’s surface. An AFM image
close to the nucleus (Figure 6a) shows many small
crystalline structures, marked by arrows 1a and 1b, which
seem to be stuck together or stacked on top of one another.
The way that the crystals seem to be stacked on top of one
another signifies that the stone may be an aggregation of
many small crystals. The spaces between the crystals in
Figure 6a provide further evidence that the stone is not a
complete crystal. These crystals in this image are also
approximately 200 A in size. Figure 6b, a surface image
of the same area as Figure 6a, but at higher magnification
and orientation, shows the stacks of crystals. The spaces
between the crystals are again noticeable. It is conceivable
that there is an organic matrix that fills the spaces between
the small crystals.

SUMMARY
The observations obtained with LVSEM and AFM support
the hypothesis that aggregation of small crystals is the
primary mechanism behind the formation of kidney stones.
The manner in which the crystals were stuck together and
stacked on top of each other, as well as how the crystals
were clustered together in seemingly random fashion in
the two stones studied provide strong evidence that
random aggregation is the mechanism by which the stones
were formed.
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ABSTRACT
Quantum molecular dynamics techniques were used to predict the frequencies of the I" point phonons
of silicon (34) in the clathrate structure. These frequencies were compared to those predicted for the
diamond phase of silicon. A wave number value for the highest frequency I" point phonon of silicon
(34) clathrate of approximately 493 cm-1, shifted by 28 cm-! from that of the diamond structure, is

predicted.

INTRODUCTION
Silicon (34) Clathrate structure is a face-centered cubic
system with 34 atoms in the primitive cell. The silicon
atoms are arranged in dodecahedra and hexakaidecahedra
in a 2:1 ratio. A detailed description can be found else-
where 1,

Interest in the clathrate structures of silicon 2 has height-
ened as theoretical studies have demonstrated that they
exhibit some unexpected properties. For example, it has
been predicted that the energy of clathrates is very close to
that of the lowest energy diamond structures of silicon, yet
the clathrate structures have a significantly higher band
gap. ! These properties suggest that the clathrate struc-
tures of silicon may have important applications in
electronic devices. The band gap predicted for silicon
clathrates is approximately the same as that found in the
porous structures of silicon, suggesting that porous silicon
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may be in some way related to a clathrate structure. This
suggests that silicon clathrates may exhibit other interest-
ing properties of porous silicon, such as photo lumines-
cence.

The phonons of a crystal structure serve as a signature for
the vibrational levels of the system. A knowledge of the
vibrational frequencies of a crystal structure allows for the
prediction of its Raman scattering spectrum. The I'" point
phonons, those that correspond to the origin of reciprocal
lattice space, were chosen for this study because these
phonons have the same wave vector as the light photons,
thus are the ones that would be detected by Raman
spectroscopy.

METHOD
Quantum molecular dynamics techniques (QMD) 3 use the
electronic structure of the material to calculate the energies
of and the forces acting in crystal structures. These are
needed to determine the phonon spectrum for the crystal.
This “tight-binding-like model” 3 uses pseudo-atomic
orbitals to determine the electronic Hamiltonian matrix
elements. The Hellmann-Feynman theorem 3 is used to
calculate the forces acting on the atoms in the crystal.

The equilibrium atomic positions within a crystal can be
computed using dynamical quenching. This technique
begins with an approximate equilibrium structure, in
which the atoms are at rest. The atoms are then allowed to
move in response to the forces within the crystal. The
system gains kinetic energy as the atoms move. This
energy is removed whenever a maximum value of the
kinetic energy is reached. Eventually, the atoms reach a
minimum potential energy configuration, where the net
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force is on the atoms is zero.
Once the crystal’s equilibrium structure has been deter- Pv R Pv Ay Rv Pv
known as harmonic analysis. 4 The displacement of the v v Pv Py Pv  Pv
atoms from the equilibrium configuration is given by: 339s] 9799 o4an I oxy I oxg ox dmy
Fv Pv Pv ?v  Fv Fv

X =(1§.xf,xf,.t§,x.§,;é. ...,X,lq,ﬁ,lﬂ), (1)
where the subscript denotes the atom number and the
subscript gives the direction (x,y,z or 1,2,3). The potential
energy of the system, V, can be expanded in a Taylor series
about the equilibrium point:

. v
V=v,+);z':g_§dg+21?§§mm+m. @)

Since the value of the potential energy can be shifted by a
constant without changing the physical meaning, V, can
arbitrarily be set equal to zero. Since the system is at a
minimum of the potential energy, the first-order shift in the
energy caused by the displacement of any atom in any
direction must be zero. This means that the second term in
Equation 2 must be zero. Ignoring terms higher than
second order, the Equation 2 becomes:

v
=1 i
At O

Thus, the force on the ptk atom in the jth direction is given
by:

Newton’s second law becomes:
IV ,
3% g dem Y ©
where mp, is the mass of the p# atom.
If the system contains N atoms, then Equation 5 corre-

sponds to 3N equations, which can be written in matrix
notation as:

-oX=MX, (6)
where

x m 0 0« 000

x Om 0« 000

x 0 0m- 000
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(7b)

Equation 6 can be rewritten as:

-M'ox=X, (8)
where M-I® is symmetric. Equation 8 is linear and has
normal mode solutions of the form:

X(@) =X(0)e™ . 9)
Using the normal mode solutions in Equation 8 gives:
M'OX=wX. (10)

The squares of the normal mode vibrational frequencies of
the phonons are found by diagonalizing the M-/® matrix.
To do this, we first had to determine the matrix elements
of ®. Each atom was displaced slightly from equilibrium
(while the other atoms were in their equilibrium positions)
and the force on each atom due to all the others was
computed. The corresponding matrix element was found
by dividing each force by the displacement. Because any
finite displacement would result in small anharmonic
contributions to the forces, two ® matrices were com-
puted: one derived from positive displacements of the
atoms; one derived from negative displacements of the
atoms. These two matrices were then averaged (thereby
cancelling the third-order contributions to the potential
energy). The resulting ® matrix was multiplied by the
inverse mass matrix M-I, and diagonalized to obtain the
frequencies.

RESULTS AND DISCUSSION
The QMD techniques of Sankey and Niklewski were used
to predict the phonon frequencies of bulk silicon and the
silicon clathrate structure. A comparison of the frequen-
cies obtained for these two structures allowed us to
determine the shift in phonon frequency for silicon
clathrate relative to the diamond structure of bulk silicon.

To determine the elements of the & matrix, an electronic
structure calculation was done that involved an evaluation
of the integrals of electron energies over the Brillouin
zone. These integrals were evaluated approximately using
the k-point method. 5 In this method, the value of the

L.
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energy at a few judicioulsy chosen “k-points’, or recipro-
cal lattice vectors, is used to approximate the average
value of the energy over the entrie Brillouin zone. As the
number of k-points increases, the approximation converges
to the exact value of the integral. Because of the computa-
tional demands of finding the electron energies for the
clathrate structure, we had to determine how many k-
points were needed for convergence to occur. For the
diamond structure of silicon, the three optic I'" point
phonons are theoretically perfectly degenerate. We found
that the average value of the predicted phonon frequency
for the three optic I" point phonons never differed by more
than 0.2 cm-! from their mean values and converged to
within 0.1 cm-! when 216 k-points were used. Phonon
‘frequencies’ are commonly given in units of inverse
centimeters; to convert them into actual frequencies,
multiply by the speed of light. The results are shown in
Table 1. The unit cell for the clathrate structure is much
larger than that of the diamond structure, so the Brillouin
zone of the clathrate structure is much smaller. We felt
that using only 8 k-points would be sufficient for the
clathrate structure, giving a k-point density that is of same
order, but somewhat smaller than the k-point density
required for convergence in bulk silicon.

For the diamond structure, we found that the equilibrium
configuration was one in which the primitive fcc cell had
atoms spaced 2.382 A apart. This structure was found to
have three I" point optical phonons, two transverse and one
longitudinal, with @ = 541 cm-1. The experimentally
measured value is 521 cm-1. The other three eigenvalues
were zero and corresponded to translations of the crystal in
each of the three spatial directions.

For the clathrate structure, there were 102, (34 x 3),
vibrational frequencies, including three values for ® =0
corresponding to translations of the crystal. The vibra-
tional density of states is displayed in Figure 1. The delta
functions of frequency are smoothed out using a Gaussian
function with width 5 cm-1. The highest frequency
phonons in this structure have a frequency of 513 cm-1, a
downward shift of 28 cm-1 from the diamond structure of
silicon. Because the model used is well suited for predict-
ing shifts in frequencies, we predict an actual frequency of

Number of k-points Predicted Phonon Frequency
cm-1
1 787.12
4 541.07
64 540.39
216 540.64
512 540.69
1372 540.66
4096 540.70
Table 1

Predicted average I" point optic phonon frequency of bulk
silicon vs. number of k-points used to approximate the
integral in the Brillouin zone.
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Theoretical density of states for silicon(34)clathrate. The
highest frequency peak occurs at 513 cml.

(521cm-! - 28cm-1) = 493 cm-1 for the highest frequency
phonons of the clathrate structure. (We are primarily
interested in the highest frequency normal mode because
this mode, in which the atoms move back and forth
directly towards and away from one another, corresponds
to a similar mode in the diamond structure).

This highest frequency peak in the Raman spectrum of
porous silicon is 514 cm-1, only a 7 cm-1 downward shift
from diamond structure silicon. 6 These results are quite
different from the 28 cm-1 we found in the shift for
calthrate structure. There does not appear to be a close
connection between the clathrate structure of silicon and
porous silicon, even though the electronic band gaps of
these two materials are nearly identical.

A previous calculation of the vibrational of this structure
used the Keating model. 78 In this model, the potential
energy is expressed in terms of two force constants, o and
B, that are derived from experimental results. The param-
eter o represents the bond stretching force constant while
B represents the bonding bending force constant. This
calculation yielded highest frequency phonons with

®= 517 cm-, significantly different from our value of
493 cm-1. The Keating model calculation, which used a B
to o ratio of 0.2, making the stretching force constant
dominant. The authors may have underestimated the
importance of the bond-bending forces because the bond
angles in clathrate often have significant deviations from
the ideal value of 109.5° found in the diamond structure.
In the clathrate structure, the bond angles vary from 104°
to 120°; 18% of the bonds between 109° and 110" and 62%
are between 107° and 112°. The authors have acknowl-
edged that their choice for the ratio of the force constants
is somewhat arbitrary. A more consistent procedure for
determining the Keating force constants resulted in a ratio
of 0.285, but this ratio may still not be appropriate for
studying clathrate structures because it is based on the
diamond structure. 9
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