Undergraduate Research

in Physics

CONTENTS

THERMAL CONDUCTIVITY OF HIGH T, SUPERCONDUCTING
James Middleton
Miami University

PRECESSION IN NEWTONIAN GRAVITATION, GENERAL

RELATIVITY AND PSEUDO-NEWTONIAN GRAVITATION ......ccccocviiinne 7
Brent Scales and Kevin Comnelius
Southern Nazarene University

NEUTRON SCATTERING: Constant Magnetic Field Band ..............cccccooeeeeni. 11
Thomas Burnes IT and Scott Stenberg
University of Nebraska at Omaha

CROSS SECTION MEASUREMENTS OF THE ”Zr(n,p)‘"’“‘Y

REACTION FROM 54 MeV TO 12.3 MeV .. RN ;-
Szabolcs Mdrka
Kossuth Lajos University, Hungary

TRAINING NEURAL NETWORKS TO DISCRIMINATE SIGNALS

FROM BACRKGROUND NOISE ........ooonnunsiosisranmmsmismiaisassissl I
Dena McCown

- Duke University

THE ONE-DIMENSIONAL NON-HOMOGENEOUS

WAVE BOQUATION oinsuinasmmisriimm e 23
Nedal Saleh
Yarmouk University, Jordan

| Undergraduate Research - Making Physics Interesting to all Students
An Editorial - Rexford B. AdeIDEIBEr .iiciicnissisassonssnsanssssssassssassssonsssoss 1

Volume 12, Number 1
November, 1993

Published by the Physics Department of Guilford College
for
The American Institute of Physics and the Society of Physics Students




THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS

This journal is devoted to research work done by undergraduate students in physics and its related
fields. It is to be a vehicle for the exchange of ideas and information by undergraduate students.
Information for students wishing to submit manuscripts for possible inclusion in the Journal follows.

ELIGIBILITY

The author(s) must have performed all work reported
in the paper as an undergraduate student(s). The
subject matter of the paper is open to any area of pure
or applied physics or physics related field.

SPONSORSHIP

Each paper must be sponsored by a full-time faculty
member of the department in which the research was
done. A letter from the sponsor, certifying that the
work was done by the author as an undergraduate and
that the sponsor is willing to be acknowledged at the
end of the paper, must accompany the manuscript if it

is to be considered for publication.

SUBMISSION

Two copies of the manuscript, the letter from the
sponsor and a telephone number or E-Mail address
where the author can be reached should be sent to:

Dr. Rexford E. Adelberger, Editor

THE JOURNAL OF UNDERGRADUATE
RESEARCH IN PHYSICS

Physics Department

Guilford College

Greensboro, NC 27410

FORM

The manuscript should be typed, double spaced, on
8 1/2 x 11 inch sheets. Margins of about 1.5 inches
should be left on the top, sides, and bottom of each

in addition to an abstract (not to exceed 250 words)
and appropriate drawings, pictures, and tables.

page. Papers should be limited to fifteen pages of text

Manuscripts may be submitted on a disk that can be
read by a MacIntosh™, The files must be compatible
with MacWrite™, MicroSoft Word™ , PageMaker™
or WordPerfect™.

ILLUSTRATIONS

Line drawings should be made with black ink on plain
white paper. Each figure or table must be on a
separate sheet. Photographs must have a high gloss
finish. If the submission is on a disk, the illustrations
should be in PICT, TIFF or EPS format.

CAPTIONS

A brief caption should be provided for each illustra-
tion or table, but it should not be part of the figure.
The captions should be listed together at the end of the
manuscript

EQUATIONS

Equations should appear on separate lines, and may be
written in black ink. We use EXPRESSIONIST™ to
format equations in the Journal.

FOOTNOTES

Footnotes should be typed, double spaced and
grouped together in sequence at the end of the
manuscript.

PREPARING A MANUSCRIPT

A more detailed set of instructions for authors wishing
to prepare manuscripts for publication in the Journal
of Undergraduate Research in Physics can be found in
Volume 8 #1 which appeared in October of 1989 or in
Volume 11 #2 which appeared in May of 1993.

SUBSCRIPTION INFORMATION

The Journal is published twice each academic year, issue

# 1 appearing in November and issue # 2 in May of the
next year. There are two issues per volume.

TYPE OF SUBSCRIBER PRICE PER VOLUME
Individual......cccecorrrerreenreerenenn. 3US 5.00
INSHIULION, 1.vvevrerarcrenerrnerreeernens $US 10.00

Foreign subscribers add $US 2.00 for surface postage,
$US 10.00 for air freight.

To receive a subscription, send your name, address, and
check made out to The Journal of Undergraduate
Research in Physics (JURP) to the editorial office:

JURP
Physics Department
Guilford College
Greensboro, NC 27410

The Journal of Undergraduate Research in Physics is
sent to each member of the Society of Physics Students as
part of their annual dues.

Back issues may be purchased by sending $US 15.00 per
volume to the editorial office.

o e————— e —



VOLUME 12

ACADEMIC YEAR 1993-1994

THe Journal of :&;
Unidergraduate Researc
in Physics

Published by the Physics Department
of Guilford College
for

The American Institute of Physics

ISSN 0731 - 3764 and
The Society of Physics Students




VOL 12, #1

THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS 3

THERMAL CONDUCTIVITY OF HIGH Tc SUPERCONDUCTING
CERAMICS

James S. Middleton *
Department of Physics
Miami University
Oxford, OH 45056
received June 2, 1992

ABSTRACT
We made measurements of the thermal conductivity of two high T Superconducting ceramics. Our
Y ;Ba;CusO7.x results confirm one of two previously conflicting measurements which differed in
magnitude by a factor of six. Our agreement with the larger thermal conductivity values is likely due
to sample chemical phase purity. Our data on BiCaSr;CuyOg.x confirms a previous measurement and
substantiates our experimental technique. A discussion of theory related to thermal conductivity of

these substances is included.

INTRODUCTION
Soon after the discovery of the Y;Bay;CusO7.x supercon-
ductor, many measurements of its various properties were
made, including two independent measurements of the
thermal conductivity. 12 While the qualitative features of
the two thermal conductivity vs. temperature [ vs. T]
results were the same, they differed by a factor of six in
magnitude. To clarify this discrepancy, we measured the
thermal conductivity of a commercially produced sample
of this material. The thermal conductivity (k) is defined
by Fourier’s law:

G
K= A AT °* (1)
where dQ/dt is the rate of heat flow through cross sectional
area A over a distance Ax with a temperature gradient AT.

The kinetic theory of gases predicts a value for the thermal
conductivity:

x:%CVvI , )

where C, is the specific heat, v is the carrier group
velocity and [ is the carrier mean free path between
scattering centers.

The thermal conductivity of these materials is dominated
by phonons, quanta of energy carried by lattice vibrations.
In the non-superconducting state, the heat transfer is
limited by the scattering of these phonons. A primary
mechanism for such scattering is the electron-phonon
interaction. Below Tk, the critical temperature, the
electrons become bound into Cooper pairs, resulting in the
vanishing of electrical resistance. This implies a reduced

Jim graduated with a B.Sc. in physics from Miami
University. This work was completed during two
summer assistantships with Professor Pechan at
Miami University in Oxford, Ohio. He was recently
married and is now living with his wife Lisa in
Columbus, Ohio

ability of the electrons to scatter phonons in the supercon-
ducting state. Thus, the superconducting sample’s
phonons are carrying heat with less resistance. This i3
realized as an increase in thermal conductivity just above
the critical temperature. Below the critical temperature,
the thermal conductivity decreases with temperature as
predicted by the kinetic theory model of Equation 2. The
mean free path and group velocity are basically indepen-
dent of temperature because the dominant scattering
processes, impurity and boundary scattering, are fixed at
low temperatures. 3 C,, and, therefore, x, are dependent
upon temperature as follows:

CG:aT (3)
if electron carriers dominate and:
C, o TN 4)

if phonon carriers dominate, where N represents the
dimensionality of phonon propagation if phonon carriers
dominate. Very low temperature measurements show x
depending upon T between T2 and T3. This suggests that
the phonon contribution is dominating the thermal
conductivity at low temperatures and that the dimensional-
ity lies somewhere between 2 and 3. This reduced
dimensionality is consistent with the highly anisotropic
nature of the ceramic superconductors. We obtained

T1>TF2

Figure 1
Quantities measured to determine the thermal
conductivity.
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Output to Keithly 181 and 199 Nanovoltmeters

Isolated Thermocouple
Signal Conditioners
(Analog Devices Model 2B50)

(+15Vv

35KQ

10 K

Figure 2
Experimental setup. The items inside the dashed lines
were contained in the evacuated chamber of the flow
through cryostat. The copper block was pressed against
the bottom of the cryostat. The 2 kW resistor was
imbedded in a copper block. The sample was connected to
the two copper blocks with a silver based thermally
conducting expoxy.

information about the chemical phase of the sample by
performing resistance measurements near the transition
temperature. A narrow superconducting transition width
suggests the dominance of a single chemical phase, while
a wide transition width implies that a mixed phase
composition is present. We used the quasi-equilibrium
technique 5 to obtain our measurements.

THE EXPERIMENT

The thermal conductivity for the sample was
determined by measuring the various parts needed in
Equation 1. Figure 1 is a drawing of our sample with
approximate dimensions 3 mm x 9 mm x 16 mm. The
experimental setup is shown schematically in Figure 2.
Thermally conducting silver based epoxy was used to To
ensure good thermal contact between the copper block and
the cryostat, the probe that holds the block was spring
loaded.

The thermal energy was supplied to the upper block by an
embedded 2 kW resistor carrying a precisely controlled
current. The current was adjusted by a potentiometer. The
dial readings could be converted to a current reading using
a simple linear calibration curve. The thermal power
deposited by the resistor was computed using the expres-
sion:

dQ/dt =Power =12R (5)
The temperature gradient AT/Ax was determined by
measuring the temperature of each copper block with type

Type E ~o Curren
Tnerma’ Couples Lo .8 Source
Signal Canditio=ers
Zpoxy Sealed Ho'e
Spring
Mechanism
Shiding
Junction

Radialicn Shield
(several emp'cyed
aiong lergth of probe:

Tharma'ly
Corductive
Silver-filled
Epoxy

3 s
Guford Instrumerts

Figure 3
Experimental apparatus.

E thermocouples imbedded in them. The voltage signal
from the thermocouples were amplified with signal
conditioners 6 and fit to a second order polynomial in each
of six 25K segments to cover the 150K range of measure-

& Y-Ba-Cu-O

Bayot, et al. -

— = Morelli, ct al.

90 120 15C
T (K)

Figure 4
Thermal conductivity of Y Ba,Cu,0, . The solid line is an
approximate fit to the data of Bayot et.al. The dashed line
is an approximate fit to the data of Morelli et.al. There is
a 5% error due to the uncertainty in the thermocouple
readings.
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better representative of single phase Y1BayCu3O7.x .
0-6 T ) ) L) T 1
& &l We checked our system for measuring x by running a
0.5 |- A A A 5 second sample, Bi;CaSr;CupOg.x, shown in Figure 6. The
c A close agreement between our data and previous results
‘; 0.4 . p provided a good test for our experimental technique.8
Q
§03 i Some of the features of the thermal conductivity vs.
k7 4 temperature curve discussed in the introduction can be
®0.2r A ] seen in our data. Figures 4 and 6 show the upturn in the
s thermal conductivity just above the transition temperature
0.1 A ) of 91K. Our measurements seem to show a linear behavior
Le i g ; : " at low temperatures. However, our lowest temperature
0 g T & o o1 82 o3 94 g5  Measuremenisareat the transition between dominance of
Temperature (K) impurity and boundary scattering and the dominance of

Figure 5
Resistance of our Y Ba,Cu,0, sample. Note the
approximately 1K transition width.

ments. The theromcouples were calibrated at ice and
liquid nitrogen temperatures. The ice-water temperature
was used to determine the zero offset and the liquid
nitrogen data were used to determine the gain of the
thermocouple signal conditioners.

The temperature of the sample was controlled to
within £1K by a flow-through cryostat 7 with a tempera-
ture controller shown in Figure 3. The sample chamber
was evacuated to 10 Torr so that the effects of conduction
and convection due to the surrounding gases would be
minimized. We estimated the value of x for the chamber
to be 3.1 x 10" W/(mK), about 9 orders of magnitude
below our lowest thermal conductivity measurements.
The convective heat transfer in the sample chamber was
estimated at 1.3 x 107 W/(m?K).

Equilibrium, a stable temperature gradient, was generally
obtained within 5 to 10 minutes after changing the
temperature controller and adjusting the rate of heat flow.
The temperature gradient was maintained at (2.0 £ . 1)K,
causing a 5% uncertainty in the thermal conductivity
measurement.

RESULTS AND DISCUSSION
The results of our measurement of thermal conductivity of
Y1BayCusO7.x is shown in Figure 4. Our measurements
are in close agreement with those made by Bayot et. al.l.
The features of the graph are the same as those of Morelli
et. al., 2 however, the magnitude of their measurement, 0.5
W/(m K) at room temperature, is significantly lower than
ours. We believe that this was due to their sample being
composed of mixed phases of material. They measured a
transition width of approximately SK, while our resistance
measurements, shown in Figure 5, indicate a transition
width of only 1K. This indicates that our measurements
and the measurements of Bayot et.al, who also got 1K, are

carrier carrier- scattering.
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PRECESSION IN NEWTONIAN GRAVITATION, GENERAL RELATIVITY
AND PSEUDO-NEWTONIAN GRAVITATION

Brent Scales * and Kevin Cornelius
Department of Physics
Southern Nazarene University
Bethany OK 73008
received December 19, 1992
ABSTRACT

The precession of the elliptical trajectory for a particle bound to a center of force by the potential Afr +
B/r? + C/r? is calculated. Three theories are compared for their precessional predictions: Newtonian
gravity; corrections to Newtonian theory coming from general relativity; and a non-linear ‘pseudo-
Newtonian’ model which is a hybrid of Newtonian theory and special relativity. The latter has
qualitative features in common with general relativity, such as the contribution of the electric field to
gravitation when the central body carries an electric charge and precession about the central body even
if it is a point source. However, this precession is quantitatively incorrect. Since the Newtonian and
pseudo-Newtonian models deploy only the vector field § and the scalar field & (the potential), our
results confirm that at least a second-rank tensor field may be required for a successful relativistic

theory of gravitation.
A Generic Study of Precession 12
The precession in the elliptical orbit of a satellite of mass U= % a=-mA B=mB+ T
m can be calculated in the following manner. The trajec- (4)

tory is given in polar coordinates by: 2
B = 2L_m y=-mC

0 = L= dr (1) Notice that § = f’if and only if B = 0. If C, and thus 7, is
“VZm \[ L2 small, expanding the integrand of Equation 3 in powers of
r’\J E-V() - m yand then evaluating the integral gives: 3
where E is the satellite’s mechanical energy, L its angular
momentum, V(r) = m ®(r) is its potential energy, m is the 0= \/g 1 + 3 a’y {( _g) }
reduced mass of the system and r is the relative coordinate.
If the satellite is trapped in the gravitation potential: + F(r) + constant , (5)
o) =4+8.€ @  where
Equation 1 can be written as: Vi 4 aZE ©)
6=-JF J’ du (3) is the eccentricity and F(r) is a complicated non-periodic
VE+ou-pu+yw function of r. 2 F(r) can be approximated by F(a), where
where a is the length of the semi-major axis. It then can be

absorbed into the integration constant which can be made
to vanish by an appropriate choice of initial conditions. 3

Equation 5 then becomes:
Brent graduated from Southern Nazarene University in
January 1993 with a B.Sc. in physics. This research
was done during his senior year and was presented at 1_ a . 6 Ji4
several regional Society of Physics Students meetings. r=28 1-esi W : )
Brent now works as a programmer in Research and ® 74'_52"

Development at DataRay Inc. in Oklahoma City.

o ) ) The radial coordinate r regains its original value when the
Kevin is a senior physics and math major at Southern argument of the sine function increases by 27, so that the
Nazarene University. He plans to earn a Ph.D. in change in the polar angle, A6, for a complete cycle of the
acoustical physics. orbit is given by:
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Ag“ B7=2Jr: (8)
Jay ’

i

4p

& 3ay
Ae_zn\/g[nw, . 0

The precession angle, 8, then can be found:

0=A0-2~x
M} (10)

=2"{(\/§‘l)* I

So, if one knows the constants A, B and C in Equation 2,
one can calculate the precession angle for the orbit. We
will examine three different models for gravitation:
Newtonian; general relativity; and a ‘pseudo-Newtonian’
gravity that is a non-linear hybrid of special relativity and
Newtonian theory. For each theory, the gravitational
potential is calculated to order 1/r3, thereby determining
the coefficients in Equation 1 and then computing the
precession using Equation 10.

or

Newtonian Gravitation
The Newtonian gravitational potential is:

-—c| £
won-o| (5}

where r - r’is the vector from the source point r”to the
field point r, p(r’) is the mass density and G is Newton’s
gravitational constant. Performing a binomial expansion

ar (1)

1
f__
-7

expansion 4:

about F' = 0, we obtain the multipole

o=@t D) 1o peuih,

= . (12)
where
o f o) & (13)
is the total mass of the source,
b= J 7 o) dr (14)
is its gravitational dipole moment and
Ou=[ Grir-r* 60 PV (15)

are the components of its quadrupole tensor. If the center
of mass is at the origin, D vanishes. Newtonian gravita-
tional sources do not have gravitational dipole moments.
This means that the constant B in Equation 2 vanishes.
Thus, a Newtonian source will produce precession in a
satellite’s orbit only if the source has a quadrupole

moment, thus breaking the spherical symmetry.

General Relativity
In general relativity, the first non-zero correction to the
Newtonian gravitational potential energy of a point mass
m in the field of a point source of mass M includes a 1/r3
term. To this order 5, the potential energy can be written
as:

2
vey=-GMm CGM L L, (16)
where c is the speed of light. Here again, B= 0. From
Equation 10, one obtains the famous result for the
precession angle
-_6nGM
5"’-(102 (1—‘3 ) (l?)

Putting in the appropriate numbers for the planet Mercury,
Equation 17 gives about 43 seconds of arc per century,
which is in agreement with observations.

Pseudo-Newtonian Gravitation
This model is a non-linear hybrid of special relativity and
Newtonian theory. Just as the ‘old quantum theory’ that
was based on the Bohr-Sommerfield-Wilson quantizaton
rules was a hybrid classical/quantum theory of the atom,
this ‘pseudo-Newtonian gravitation® is a conceptual
patchwork that is intermediate between classical gravita-
tion and general relativity. As with the old quantum
theory, pseudo-Newtonian gravitation is not always
successful quantitatively, but contains some conceptual
features that survive in the more comprehensive theory.

Pseudo-Newtonian gravitation begins with Poisson’s
equation for the Newtonian potential:

V2 0=47G ppus (18)
where pmass is the mass density of the source. Now we
fold in the idea from special relativity that a mass m is an
energy mc2. Hence, the gravitational field energy density

2
- ¥50 (19)

corresponds to a ‘mass density equivalent’ of the gravita-
tional field:

(Vo)

8nGc?

Pseudo-Newtonian gravitation is invented 6 by including

Pgravity field in the source term of Equation 18
V2 P=47G (Pm.l: +pﬁtld)

This model has been extended 7 to include a source
carrying an electric charge q, so that pgeia would include
the mass equivalent of the electric field energy density

Putces =1f£’=1(‘7"")2
electric field '2‘;1' 3 o2

(in Lorentz-Heaviside units), where ¢ is the electric
potential,

(20)

Pgravity field ==

(21)

(22)
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Consider a satellite of mass m and zero electric charge,
moving in the g and E fields of a point mass M that carries
acharge ¢. In the neighborhood of the satellite, where
there is no source mass, so that Py, = 0, Equations 20 -
22 reduce to the non-linear equation:

1 2_1 2
Vio+ 5 5 (Vo) =5 0 (V) (23)
where
o=2 _4:;26 (24)
When the Coulomb potential is used for ¢ , the solution to
this equation has been found to be 7
D(r)=2c%In {ex[{%?) 1+ L] smf{—; } » (25)

We now will expand this solution to order (1/r3) so that we
can use the parameterization of Equation 2 to find the
precession of the satellite in this pseudo-Newtonian
gravitational potential. We find:

A=-GM (26)
which reduces to the Newtonian limit, and
B=n G ( ]
(27)

c--ntf (G2

Since B #0, even if g = 0, it appears that the pseudo-
Newtonian gravitation model predicts a gravitational
dipole moment for a point source. This is in contrast to the
Newtonian theory and the limit of the general relativistic
model.

We now can use Equation 11 to find the precession angle ,
Opn, predicted by pseudo-Newtonian gravitation. & is
related to the general relativistic precession angle &y,
given in Equation 17 by:

g,

PRV 28)
This would predict a precession angle for Mercury that is a
factor of 12 smaller than the measured one.

DISCUSSION
The pseudo-Newtonian model is ‘on the right track’ is
some qualitative ways, but is quantitatively incorrect. As
with general relativity, where all energy sources produce
gravitational fields, the pseudo-Newtonian model has an
contribution to the gravitational potential from the electric
interaction. As with general relativity, the pseudo-
Newtonian model predicts precession for the orbit of a
satellite around a point source. However, the magnitude of
the precession predicted by the pseudo-Newtonian model
is significantly less that measured.

A relativistic theory of gravitation requires more than

‘Newtonian gravitation plus E = mc2 *. One should not be
surprised than general relativity is more complicated than
Newtonian gravitation and special relativity. The pseudo-
Newtonian model is useful, as shown in our calculation
that it produces a precession of the orbit, for showing why
this is so.

The underlying problem with the pseudo-Newtonian
model is that, as with the Newtonian theory, it attempts to
model gravitational fields with only a zero and a first rank
tensor (the gravitational potential @ and the vector field g
respectively). This example suggests than an accurate
relativistic model of gravitational, viz. general relativity,
must contain at least a second-rank tensor.
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NEUTRON SCATTERING: Constant Magnetic Field Band

Thomas D. Burnes II and Scott L. Stenberg
Physics Department
University of Nebraska at Omaha
Omaha, NE 68182-0266
received December 19, 1992

ABSTRACT
The exact solutions to the Pauli spinor equations which give rise to the transmission and reflection
coefficients for a neutral magnetic dipole in a constant magnetic field band are presented. Since the
parallel and antiparallel spin components see different potential barriers that depend totally on their
orientations with the external magnetic field, it is possible to use this spin-dependent feature to study
the characteristics of the magnetic field. Two examples of the transmission and reflection coefficients

for both spin states are presented.

INTRODUCTION
Stern and Gerlach! first observed a splitting of a neutral
silver atomic beam after it was passed through an
inhomogeneous magnetic field. This result indicated the
existence of only two possible orientations for the mag-
netic moment of the silver atoms. In 1925, Uhlenbeck and
Goudsmit2 attributed the shift of the magnetic moment of
the electron to its intrinsic angular momentum. This
hypothesis of the electron spin proved to be correct and is
now regarded as one of the fundamental properties of all

elementary particles.

By analogy, it is required that the spin angular momentum
operators of Sy, Sy, and §, must also satisfy the same
quantum mechanical commutation relation of that of the
orbital angular operators, that is, for Ly, Ly, and L., which
are functions of the angle variables 8 and ¢,

LL,~L[L,=ihL,. (1)
We must have the similar commutation relation for spin
angular momentum operators:

§,8,-8,5,=ihS,. 2)
Pauli introduced the matrix representation for these
operators which satisfy Equation 2:

Tom received his B.Sc. degree in physics in January
1993 from the University of Nebraska at Omaha.
Currently, he works as a research assistant in the
Department of Geophysics at UCLA.

Scott is a senior in engineering physics. He will
graduate at the end of this academic year. He plans to
continue his study in engineering in the graduate
school. The research discussed in this paper was the
product of their senior projects.

01) ¢ _1(0i) g_1(1 0
10]'Sr‘2(fo]'5x“2(0-1)-

8,8; - 8,8, =ik,

The eigenfunctions of the orbital angular momentum
operators L_, L_and L_are continuous functions of the

. ) : i
angle variables’ and d; while the spin angular momentum
operators § , § , and Sz, given in Equation 3, are 2 x 2
matrices. The eigenvectors of S, Sy and Sx are column
vectors. For example the spin states for the positive z and
the negative z directions are:

s,:%(
3)

(4a)

The eigenstates for other spin-angular momentum opera-
tor, such as SJt which corresponds to spin pointing at +x or
-x directions are:

ze=2{1) z=3{ 1) @)
and for the spins pointing in the y direction:
ro=3(1) m=%{1). (40)

One can see that ¥, and x., are linear combinations of ¥,
and y.,. One can also verify that the eigenstates of S, have
the similar feature. This is entirely a quantum mechanical
phenomenon.

Figure 1 shows a hypothetical experiment we proposed as
a demonstration of such a novel feature. We began by
utilizing a polarized neutron beam emerging from the left
carrying momentum in the +x direction. The neutron spin
is either pointing in the +y or -y direction (that is, either
pointing into or out of the page). The neutron then enters
constant magnetic field, B, which is confined to the region
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Figure 1

Schematic diagram of the hypothetical neutron scattering

experiment.

from x = 0 to x = a, and points in the +z direction. The
neutron beam then enters the region x > a, where there is
no magnetic field. We calculate the reflection and trans-
mission coefficients for this beam of neutrons.

THEORY AND DISCUSSION
The neutron is of monochromatic energy given by:
_n i
B - ©

where m is the mass of the neutron, h is Planck’s constant
and k is the wave vector. The energy of the interaction
between the magnetic moment of neutron L, with the
magnetic field B is determined by:

U=-T, B where ,=—191 (2&) .6

mc
The negative sign in |, is due to the special property of a
neutron; the direction of the magnetic moment of the
neutron was found experimentally to be opposite to that of
its spin angular momentum,

In contrast to classical mechanics, neutrons whose spins
are pointing in the +y or -y directions in region I, have
their spin components parallel or anti-parallel to the
magnetic field (the z direction) in region II. If the mag-
netic moment is pointing opposite to the magnetic field,
the total energy of the system becomes:
2

Er= % - B. @)
In this case, the energy of a neutron decreases when it
passes through the magnetic field region. Itis asif a free
particle sees a potential barrier of height p,B.

The other spin component, which is opposite to the z-
direction magnetic field or has the magnetic moment
pointing along the magnetic field, has its energy given by:

2
EF%?"ZW,,B. ®)

In this case, the energy of the neutron increases and can be
viewed as a free particle passing through a well of depth
HnB.

We can use the standard mathematical treatment of a free
particle passing through a potential barrier or well to
describe this scattering experiment. The effect of the spin
of the neutron is incorporated into the Schrdinger
equation by multiplying the plane wave part by the spin
state:

y=ev2. ©®
Neutrons are sent from the left hand side, region I, where
x<0, giving rise to the wave functions:

v, o e“"(é) and vy, e‘h(?)

for the spins parallel and anti-parallel to the magnetic
field.

(10)

At the boundary between regions I and II, when x=0, there
is a reflection term in the wave equations. The reflected
wave is traveling in the - x direction, so the unnormalized
wavefunction for spin parallel to the magnetic field can be

written as:
= pikx[1 -ikx [ 1
Vi =€ [0]+R+e (0) @amn
and for spin anti-parallel to the magnetic field:
w_,:eih(?)m_e-*‘b(‘l)) , (12)

where R, and R. are the reflection coefficients of the spin
parallel and anti-parallel states respectively.

For the neutrons which penetrated the first boundary and
pass through the magnetic field region, the static magnetic
field does not alter the direction of the spin. The wave
function in region II for the spin parallel to the magnetic
field is:

VA, ¥er(§ )48, (1) 13)
and for spin anti-parallel to the magnetic field is:
w_,:A_e*’r'-*((l))+B_ e-"*'—=(‘1)) , (14)
where:
Wky  #
L

In the region III, where x>a, there was no reflection,
therefore, the wave is only moving in the +x direction.
The wave functions in region III are:

%=nefh(})] and w_,:r_efh(?] (16)

for spin parallel and anti-parallel to the magnetic field,
where Ty are the transmission coefficients for the spin up
and down cases respectively.

The coefficients A+ and B+ in Equations 13 and 14 can be
determined by applying the boundary conditions at x = 0
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and x = a to Equations (11) through (16). The quantities
of interest are the reflection and transmission coefficients
R and T. They can be determined by matching the
boundary conditions for both wave functions and momenta
atx = (0 and x = a. This is identical to the quantum
mechanical treatment of a free particle passing through a
potential barrier or well. However, in this case, the
equations must be matched separately for the spin parallel
and spin anti-parallel cases.

Since the kinetic energy of the incident neutron can be
either greater than or less than the potential barrier, there
were two different situations to address. In the case when
the spin is parallel to the magnetic field, the barrier could
be larger or smaller than the kinetic energy of the neutron.
When the spin is anti-parallel to the magnetic field, the
barrier is always less than the kinetic energy.

For the case when the spin is parallel to the field and when
the barrier term is greater than E, the equation for
reflectivity is:
1
R=|R+|2=[1 +44(1+ ;Isinhk’a)_zI (17

and the equation for transmissivity is:

RR,[= [1 +4¢(1+ ¢)sinh k’a)_zr (17)

where:
- _E
¢= B (19)
and:
k‘:J—Z”;:';‘"B-kZ. (20)
After some algebraic manipulation, one finds that:
R+T=1 (21)

which guarantees the conservation of particle flux.

Now consider the case where kinetic energy is greater than
the barrier. The equation for reflectivity is:

1
RR,['= I1 +4£(¢-1)sin k’a)_zI (22)
and the equation for transmissivity is:
s Dsyp =1

T=|5.F=|1+_S0Ka | (23)

I + I‘l 4{(; _ 1)

In this case, the value for k’ is given by:
;tc’=1/fczmz""’f_:‘z"'B . (24)

One can see that when the barrier is larger than the kinetic
energy, R and T (Equations 17 and 18) vary exponentially
with energy. But when barrier term is less than the kinetic

energy, R and TTEquaLIons 22 and 23) oscillate with £,
gy

In the spin down case there is only one possibility because
the incident energy is always above the potential well. In
this situation k£ “becomes:

K=,/ 1+ ";—‘2‘" (25)
The equation for reflectivity is:
1
ReR [ =[1+4£(1+ ¢)sin k’a)—ZI (26)
and the transmissivity is:
1
2 sin’k’a
T= S_ =1+ —=">r—"— . (27)
15-1 4¢(1+ c}[
Once again, we find that:
R+T =1 (28)
Finally, when
Ka=nm , n=1273, .. (29)

R=0and T = 1. This is the resonant transmission, the
case where the reflected wave disappears.

NUMERICAL RESULTS
Computer programs were written to generate data and
graphs for the various reflectivity and transmissivity
coefficients as a function of energy. Figure 2 shows the
transmissivity and reflectivity for B = 50 T, the highest
magnetic field produced in laboratories, in the energy
range of 4.0 x 10-25J to 8.0 x 10-25 J and magnetic field
band spacing @ = 2.7 x 10-8 m. Figure 3, shows the
transmissivity and reflectivity coefficients for
B = 8.0x10+8 Gauss, the magnetic field of a typical neutron
star,

1049
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Coseflicients
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Raflectl
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e
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Energy {erg.) P

Figure 2
Reflectivity and transmissivity coefficients for a magnetic
field of 50 T confined to a spacing of 2.7 x 108 m. Notice
the oscillatory behavior.
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Transmissivity and reflectivity coefficients for a magnetic
field of 8.0 x 10° T and a magnetic field band spacing of
1.2 x 10" m, values typically found in a neutron star.

in an energy range of 4.0 x 1018 J to 1.2x 10-17 J and a
magnetic field band spacing a = 1.2 x 10-11 m. The values
of the magnetic field band width and energy ranges were
chosen to demonstrate oscillatory behaviors. The kinetic
energies were chosen to be on the order of magnetic
interaction energies (4,8 and magnetic field band widths
were of the order of the reciprocal of the wave vectors.
The amplitudes of oscillation for the spin parallel to the
magnetic field cases were smaller than those of the anti-
parallel cases. This is because the neutrons have different
energy while passing through the magnetic field.

SUMMARY
The mathematical formulation of quantum wave scattering
by the square potential barrier and well was used to
describe the interaction of a neutron spin in a constant
magnetic field. Exact equations for reflectivity and
transmissivity were derived which indicated that when the
spin is parallel to the magnetic field, the neutron sees a
barrier and when the spin is anti-parallel to the magnetic
field, the neutron sees a well. A computer program was
developed to generate data for analysis. Plotting of the
data revealed the expected results. Recently Barut and
Dowling 3 studied the energy band structure using the
neutral magnetic dipole scattering through a periodic
magnetic field. They suggest to utilize this spin dependent
effect as a spin-polarizer. The purpose of our independent
study was to use neutrons as a probe to study the magnetic
field distribution inside the flux tube and the structure of
the flux tube of the type-II superconductors.
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ABSTRACT

This work is part of an experimental program that measured the excitation functions for several
reactions of Zr isotopes. This paper is a study of the *Zr(n,p)™™Y process using the foil activation
technique. Neutrons were produced by the 2H(d,n)*He reaction using a D, gas target. The deuterons
were accelerated with a variable energy cyclotron. Foils were irradiated by mono-energetic neutrons.
The activity of the foils was determined using a semiconductor g-detector. The neutron flux density
was quantified using #Al(n,o) and **Fe(n,p) reactions. We measured the cross section at several
energies and obtained results in a previously unexplored energy range. Our results were consistent

with older results at lower energies.

INTRODUCTION
Experiments that determine the excitation function for
several neutron induced nuclear reactions have been
performed for many decades at the Institute of Experimen-
tal Physics at the Kossuth Lajos University (KLTE) 1.

From my childhood I was interested in the natural
sciences. In the secondary school, I studied computers
and programming intensively. After competing in the
entrance examination to the KDK (Research Student
Circle) I had a chance to participate in research at the
university as a high school junior.

After completing my compulsory military service, I was
accepted to Kossuth Lajos University in mathematics
and physics. In the second semester at the university, I
joined a research group in the Experimental Physics
Department. The first results of this experiment was
presented at the 1991 National Science Student Confer-
ence.

During the last year, one of my friends and I also
studied red sensitive holographic emulsions and
reflection holograms. Beginning in the autumn of 1991,
I was a teaching assistant and taught introductory
physics labs for freshmen. For two months during the
fall of 1992, I was a visiting student at the University of
Alabama, Tuscaloosa. From November 1992 to
February 1993 I spent three months at the University
College of Sawasea, Wales. I graduated in June, 1993
from Kossuth Lajos University, Debrechen. Currently, I
am a graduate student in the United States

This paper is a discussion of an experiment in which the
excitation function for the 90Zr(n,p)?0mY reaction was
determined. Zr is an interesting target because this metal
is abundant in a number of situations where there is a very
high neutron flux, e.g. in fission reactors. Also, the
excitation function for Zr has been examined in only a few
experiments.

We determined the cross section of the reaction in the
following way. We irradiated the Zr foil and the monitor
foils with mono-energetic neutrons for a fixed length of
time. The Y produced in the (n,p) reaction is in an excited
state. It decays to the ground state by gamma emission
with a characteristic spectrum. By measuring the number
of gammas produced in the decay, the absolute number of
Y nuclei produced from the neutron irradiation can be
determined. From this value, the neutron flux (determined
using monitor foils with well-known excitation functions),
the time of irradiation, and from some geometric factors,
we could find the cross section for the 90Zr(n,p)90mY
reaction.

THE EXPERIMENT
If one needs mono-energetic neutrons in the few MeV
range at several energy points, an accelerator is used. The
neutrons are produced by accelerating mono-energetic
deuterons at a deuterium target and making use of the
2H(d,n)3He reaction. The neutrons produced are mono-
energetic because the incident deuterium beam is mono-
energetic and 3He has no discrete excited states. The
deuterons were produced by the MGC20 cyclotron 2 with a
beam current of 3 pA. This machine is isochronous,
compact and can be used for producing deuterons with
about 10 MeV energy with a small energy spread. We used
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. neutron energy flux s irradiation BG
‘°ﬂ§' ring beam stopper - Pt 0.9 mm (MeV)  106cm2s! mm  timein hrs

5.38+0.18 1647 15 6.84 No
beam U 5.89+0.18 1602 15 6.85 No
line 6.39+0.18 1282 15 8.93 No
I 6.80+0.18 1446 15 433 No
/ 8.02+0.09 549 40 7.19 No
wall Zr monitor foils 8.43+0.09 583 40 6.89 No
stainless steel - 0.3 mm 8.9240.17 15.04 20 3.65 No
outside diameter - 10mm | D2 8as target 9.43+0.09 205 40 10.10 No
gas pressure - 1100 mb 10.23+0.09 482 40 6.23 Yes

entrance window 10.95+0.09 557 40 7.33 Yes

. ~Mo -8.140.1 mg/em 11.56+0.09 389 40 519 Yes

inner wall 12.25+0.10 704 40 6.18 Yes

- Mo - 14.1 mg/cm Table 2
~ length 50 mm Characteristics of the various irradiations. s is the
Figure 1 distance between the foil and the end of the gas target.
Position of the gas target, the fission chamber and the The column BG indicates if there was background
foils. The characteristics of the D, garget are shown. irradiation with an empty gas target.

a D, gas target. The gas pressure fluctuated about 100
mbar because in this case, the D; gas in the target cannot
get polluted by the gas outside the target. The experimen-
tal setup is shown in Figure 1.

The 2H(d,n p)2H reaction causes background problems
above 5 MeV. We also had to take into account that the
Mo entrance window of the gas chamber changed the
energy and energy spread of the deuterons. The energy
and energy spread of the neutrons for the given geometry
was calculated by the Monte Carlo method.

The neutron flux density was measured by the foil
activation technique. The essence of the method is that the
foils of different metals are irradiated together with the Zr
foil by identical neutron fluxes. If we know the exact
excitation function of these monitors, we can calculate the
absolute neutron flux density. From that, we can deter-
mine the unknown excitation function. The monitor foils
used are listed in Table 1.

We followed the variations of the neutron flux density with
a fission chamber during the irradiation process. The
position of this instrument is shown in Figure 1. We

mounted the foils on the front part of the chamber, tight to
the 238U layer. The 238U coating of the chamber contains
0.03% 235U. Its mass is 538 pug and has a diameter of 19
mm. The temperature of the target was monitored with a
thermocouple. The target was isolated from the beam
transport system by a teflon ring so that the target current

D, filler

GBI

deuterium
gas target

H_I_I_/

neutrons

fission chamber

/

ammeter thermocouple

Metal Mass (grams) Thickness (mm)
In 0.54 0.27
Al 0.14 0.2
Fe 0.22 0.1
Zr 1.75 1.1
Ni 2.5 1.0
Table 1
List of fils used. Each foil had a diameter of 19mm.

Stilbene
neutron
spectrometer

IBM AT with
ACCUSPEC multi-channel
analyzer card

Figure 2
Schematic diagram of the devices used during irradiation.
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Reaction A Half-life E, I oF =
% hours keV. % g
0Zr(np)omY 5112 3.19 2025 96.5 T b
479.5 " £ 0
2AI(n,G)2¢Na 100  14.97 13685 100| Al a5 0820
27544 99| 4 — Ly 205
S6Fe(n,p)4Mn  91.7 2.58 8466 989| % e A | 90
1810.7 272| = g 23189 ho o T LT gg¥
Table 3 g2l E 21862Y .
Decay data for the radio-nuclides used in the evaluation. CTF ,’?‘ 17607 |W| Lo .- 4‘, "

) :32!' y W A ""p‘ B
could be measured with an ammeter. The neutron energy = . . ; J : - - ;
was checked with a stilbene neutron spectrometer which < 5 7 9 1
was placed 1 m behind the fission chamber. A schematic Fanrgy 2 eV
diagram of these devices is shown in Figure 2. Figure 3

The parameters for the irradiations are listed in Table 2. At
the end of each irradiation, we began to measure the
activity of the foils with two different semiconductor
gamma detectors. The monitor foils were measured by a
Geli detector and the gamma spectra of the Zr foils were
taken with a HPGe detector. Both devices were sur-
rounded by lead shields with thick walls. The pulses from
the detectors were collected with a 8192 channel analyzer
card of an IBM AT computer. The random pile-up
correction was determined using a pulse generator of
known frequency.

Several spectra were recorded for each foil during the
‘cooling time’ interval of 7 minutes to 100 hours. From
time-to-time, we analyzed the spectrum of 226Ra for
absolute determinations of the full energy peak and the
total efficiency of the gamma spectra. This program3
found the peaks automatically and performed peak shape
and energy calibration on the basis of calibrations spectra.
The peak area was calculated in two different ways: 1) the
pulse counts of the peak channels were summed; 2) a

Energy of neutron Cross section in mb
5.384+0.18 0.044+0.009
5.89+0.18 0.145+0.008
6.39+0.18 0.36+0.10
6.80+0.18 0.58+0.14
8.02+0.09 1.75+£0.04
8.43+0.09 1.90+0.04
8.924+0.17 2.5040.03
9.43+0.09 2.78+0.06
10.2340.09 3.86+0.50
10.95+0.09 5.4110.07
11.56+0.09 5.6240.08
12.254+0.10 9.08+0.10

Table 4
Measured cross sections for the “Zr(n,p)™Y reaction.

Measured cross section for the ®Zr(n,p)*™Y reaction. The
solid symbols are our data, the open symbols data from
Majah and Quaim.®

function was fit to the peak and the integral of this
function determined. The final value given by the program
was the average of these two values.

The decay curves for the different gamma lines were fitted
using the method of least squares. The decay data for the
reactions of the foils are listed in Table 3. The initial
(extrapolated) activity was calculated from this decay
curve. This activity was corrected for the cascade coinci-
dence losses and for the self-absorption of the foils. The
necessary data for these corrections were taken the
literature 45,6, The correction 7 for deuteron energies
higher than 4.5 MeV (because of the 2H(d,n p)2H reaction)
was determined on the basis of the literature.

RESULTS AND DISCUSSION
The cross section results are listed in Table 4 and shown in
Figure 3. The results of Majah and Quaims? are also
represented in Figure 3. The neutron flux densities were
determined using the Al and Fe monitor foils. The errors
in the cross sections shown in Figure 3 and Table 4 are the
statistical uncertainties of the activity only.

If we compare the two experiments shown in Figure 3, we
observe that our results are systematically lower than those
of Majah and Quaim. This may be because we used other
literature data for the monitor reactions and we used a
different correction method. However, the results are still
in reasonable agreement. Our three highest energy points
are the first measurements in the 10.5 MeV - 12.3 MeV
range.
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TRAINING NEURAL NETWORKS TO DISCRIMINATE SIGNALS FROM
BACKGROUND NOISE
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ABSTRACT

One of the major challenges in experimental high energy physics is to discover resonances of rare
particles against a noisy background. To asses the suitability of neural networks for this task, we
studied several simple configurations of signal and noise in a two-dimensional parameter space. The
ability of the network to discriminate the signal depended sensitively on the configuration and can be

greatly enhanced by suitable processing.

INTRODUCTION
The aim of many experiments in high energy physics is to
discover and investigate the properties of rare particle.
Often it is very difficult to discover the signature of these
particles against the background. There are various
techniques that are used to suppress the background, and
thus enhance the relative signal strength, but none of the
techniques currently used are optimal. Recently, it has
been suggested that neural networks may be used very
effectively for this task. 1

It is still unclear, however, whether neural networks can
perform an unbiased data analysis or whether they produce
artificial signals due to information acquired during the
training process. The objective of this project is to
investigate this problem. We studied how a possible
training bias can be avoided in some simplified models
with two parameters where a complete solution is known.
The results of this project will be used to identify the
decay of unstable particles in a six-dimensional parameter
space from background events.

NEURAL NETWORKS
A neural network is a computer program that simulates
brain functions. Starting with the input, the program
transfers information to various points in successive layers
or levels of the program called hidden layers. Synaptic
weights, multiplicative factors that designate how strongly
information should be passed from one layer to the next,
are determined by the network for each unit, or data
locations within the layer. In the training process, the

Dena received her B.Sc. in physics from Duke Univer-
sity in May, 1992. She did this research as part of the
Undergraduate Research Support program at Duke
during the 1991-92 academic year. She is currently
pursuing an M.S. in medical physics at M.D. Anderson
Cancer Center.

network takes the input, a specific training pattern in this
case, and carries it through the network, assigning synaptic
weights as it goes. Certain channels for data transfer from
layer to layer are strengthened, and the network learns to
use these channels. The output indicates which channels
developed to be stronger than others. Using a known input
and comparing the output will show whether or not the
network developed the proper channels, thereby learning
the pattern.

This network used has two inputs, one hidden or interme-
diate layer, ten units in each layer (as shown in figure 1)
and 1 output. The program we used 2 could be expanded
to any number of layers. Figure 2 shows the two-layered
structure used later in the analysis. Each unit in each layer
has several connections going into it. These connections
have strengths or synaptic weights associated with them.
Each individual unit value is multiplied by its synaptic
weight and passed on to the next unit. This next unit then
sums all of the weighted input values it is given. If that
sum is greater than a specified threshold for that unit, the
unit will ‘fire’, it will become active and proceed with
passing its value to the next unit. The training phase of the
network used here utilizes error back propagation. The
desired output is compared with the actual output and that
information is sent back through the network so that the
synaptic weights can be adjusted. The process is then
repeated.

Figure 1
Schematic diagram of a one-layered network.
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Figure 2
Connectivity structure of a two-layered network.

THE PROJECT
To begin this phase of the project, we decided to test some
very simple structures. Using MATHEMATICA™ 3 we
generated programs for several data sets with half of the
data coded as signal (target output value of 1) and half as
background (target output value of 0). We chose the
geometries shown in Figure 3: a) a two-sided rectangle
and a foursquare; b) two concentric circles; and b) a
rectangle overlaid with a ring, where the rectangle is coded
as background and the ring is coded as signal. The first
two patterns have the same geometrical structure, but one
is coded as four separate squares with signal and back-
ground arranged in a chessboard-like pattern. The other is
coded as two vertical rectangles, one left and one right of
the y-axis. Random assignments for coding were used as
often as possible. These data were then fed into the
network and analyzed to see if and how the network was
working. A working network would successfully separate
signals from background.

The network program was run on a NeXT™ computer.
The random functions used for initialization did not
function properly on the NeXT™ system, so a new one
had to be added. Various stages of output were printed to
monitor the network’s function: errors for each data point
were printed and the convergence patterns monitored. The
synaptic weights were corrected by the new random
number generator. When all the ‘bugs’ were out of the
program, the network could distinguish between a signal
and a background in the simple models: a two-sided
rectangle and the foursquare.

The performance was fairly good. For the simple models,
almost every point converged to a one or zero. As the
models got more complicated the convergence was less
perfect, but still good. All data samples were run with 100
data points and 100-500 iterations. The simpler the data
set, the fewer iterations were needed for convergence.

The next stage was 1o try the rectangle/ring. Some trouble
arose because of the overlap between the signal and the
background. The network needed more hidden layers to
distinguish this model. To verify this network need, the
program was run with one layer for 500 iterations. The
results were not good. The network seemed to move to 0.5
frequently, indicating that it could not discriminate

between signal and background. Two layers did not
produce significantly better results after 500 iterations.

GENERATING GRAPHICAL OUTPUT
To convert the output of the neural network program from
column form to graphical form, and thereby verify that the
network was learning the appropriate picture,
MATHLINK™ ¢ was used to connect the C-program
simulating the neural network to MATHEMATICA™ ,
Several minor changes had to be made to the C-program
so that it would interface with MATHEMATICA™ and
MATHLINK™, A template file was also established to
serve as a ‘decoder’ for the connection. Once the link was
established, MATHEMATICA™ was directed to
plot a certain area of a coordinate system with the results
of the network calculations. The parameters for plotting
varied depending on the area in which the pattern was
located. MATHEMATICA™ would then take each point
in that specific area and give that point as input to the
network. The network would give the number it had
leaned for that point (something between 1 and 0).
Finally, MATHEMATICA™ would plot all three coordi-
nates, the two that designate a point in the area and the
network’s output for that point, in a 3-D plot. The plots
were to imitate the design the network was to learn.

The network did learn the pattern of the two-sided
rectangle. The results are shown in Figure 4a. The
optimum network structure was two hidden layers with 20
units each. The foursquare picture was more complicated
for the network to learn. The same network structures
proved to be optimal for the four square as were for the
rectangle. However, the network did not learn to raise the
appropriate points in the lower section of the graph. The
best results obtained are shown in Figure 4b. Since the
network did learn the first pattern, but could not learn the
second, we determined that the foursquare violated some
fundamental principle and a general form of the network
will not be able to learn this pattern. Perhaps a more
elaborate network or one specifically programmed to learn
this pattern world perform the task better.

The best results for the rectangle and circle pattern with
overlapping signal and background points was obtained
with 200 training patterns, 20 units per layer and 2 hidden
layers shown in the upper middle graph in Figure 5.

We began testing the hypothesis that the network would
leamn circular pattern better when trained with polar

(a)

Figure 3
The geometry used as training patterns.
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Figure 4
Patterns the network learned for the: a) two-sided
rectangle and b) four-square training patterns.

coordinates. The same points were generated by
MATHEMATICA™ and stored in two separate files, one
in rectangular coordinates and one in polar coordinates.
The network was then trained on each so that a compari-
son could be made. After several tries with the polar data,
the network was consistently producing very large error
values, initially leading to the conclusion that the network
could not train in polar coordinates. However, once the
limits were changed for the units per layer, the network did
respond properly. Fairly good results were obtained for
the configuration with polar coordinates (shown in the top
right of Figure 5), but preliminary finding indicated that
the network was not capable of distinguishing the overlap
well.

The assumption that we made was that the network could
learn patterns that had few and very definite breaks which
the overlap could not provide. To check this, the configu-
ration was slightly altered so that the rectangle became a
square, completely enclosed by the ring (lower left Figure
5). The results for the rectangular coordinates (bottom
middle of Figure 5) were not any better, but the polar
results (bottom left of Figure 5) showed significant
improvements. This lead us to the conclusion that a
suitable preprocessor was needed for the data before
feeding it to the network. In this case, the preprocessor
simply translated the data from rectangular to polar
coordinates. The exact function of the preprocessor will
depend upon the training pattern and the specific form in

Figure 5
Data sets used and patterns learned for rectangular and
polar coordinates.

Figure 6
Data sets and results for network learned values above 0.5
and 0.7 (rectangular training) and above 0.43 (polar
training).

which the network requires its input.

In the next phase of the evaluation, MATHEMATICA™
was asked to plot all x and y points for which the network
attained higher than a particular value. Here we expected
the configuration to improve as the cutoff value for the
graph increased. The top part of Figure 6 shows the
results for the overlapping configuration trained in
rectangular coordinates. The middle graph is plotted for
points above 0.5 and the right graph for points above 0.7.
The lower part of Figure 6 plots the same data set trained
in polar coordinates for network values above 0.43. The
polar training was more effective in obtaining the desired
shape, but not for obtaining the desired values. The
network did not assign any values higher than 0.44 for this
pattern.

The same analysis was performed for the configuration of
the rectangle completely inside of the ring, with better
results. Figure 7a shows the data set; Figure 7b shows the
training in rectangular coordinates and plotted when the
network attained a value of 0.5; Figure 7c the graph of the
points for which the network learned greater than 0.5 when
trained in polar coordinates and Figure 7d, for polar
coordinates for which the network learned a value greater
than 0.7.

SUMMARY
Several facts about a neural network have been learned.
First, there is an optimal network configuration for each
different data set that the network is to learn; that is, more
complicated training patterns require more hidden layers.
Second, a preprocessor is needed before feeding the data
to the network. Finally, the network will train better when
the signal and the background points do not overlap. All
of this should be valuable insights when attempting to
apply neural networks to data analysis in high-energy
physics.
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(©) (d)
Figure 7
a) Data set used to obtain network values b) greater than
0.5 for rectangular coordinates; c) greater than 0.5 and d)
greater than 0.7 for polar coordinates.
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ABSTRACT
The well known ideal wave equation is valid only for homogeneous media, where the wave propaga-
tion speed must be constant. In this paper, a modification of the wave equation is made so that it
describes a disturbance propagating in a non-homogenous medium. Two examples of this equation are

worked out.

INTRODUCTION
The one-dimensional wave equation is:

Py 1y _
*® var 0 ®

where v is a constant, the velocity of the wave. Solutions
to Equation 1 describes any disturbance (wave) propagat-
ing in a homogeneous medium. However, if the medium
is not homogenous, Equation 1 cannot be used to describe
the motion of the wave. 1 The non-homogeneity is
manifested in the velocity of the disturbance not being
constant, but depending position.

DERIVATION
If y = y(x,t) represents a one-dimensional disturbance or
wave, we can write:

dy oy ax _dy 2

U= H AT @

where v is the velocity of the disturbance. Differentiating

Equation 2 with respect to the spatial coordinate x gives:
3 o~ ax VT ox Ox -

If the velocity v is assumed to be independent of time,
differentiating Equation 2 with respect to time gives:

dy_dy
32 " oxot V. 4)
Equating the mixed second derivative terms in Equations 3
and 4 gives:
dy v _ 1y
sFV+——— . 5
axr " ox ox v o ©)
Rearranging the terms in Equation 5 yields:
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interest in the foundations of quantum mechanics and
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pursuing his Master's degree at Western Michigan
University-Kalamazoo. He is worried about the
recession in the job market for theoretical physicists.

lall’ﬁ___aZ‘I‘”O (6)

812 vox ox Vv or
Equation 6 is the non-homogencous wave equation in one
dimension. Notice that when v is a constant, the middle
term in Equation 6 vanishes and we obtain the ordinary
wave equation (Equation 1) as a special case.

SOLUTIONS
It can be shown 2 by direct substitution that the general
solution to Equation 6 has the form:

V) =G (x— I(: W) dr )+ F (x + j{: W) dr ) .

where v(¢) is the velocity of the wave front as a function of
time, and F and G are continuous functions having as their
argument the term x + [w(¢') dr’.

One can also think of a solution to Equation 6 that is of the
form:

y(xh) =x(x) TQ), @)
where % (x) is only a function of position, x, and T(¢) is
only a function of time, . Substituting Equation 8 into
Equation 6 and separating the variables produces two

ordinary differential equations:
% +@2T=0, ©)
and
d? x . 1dv dz a>2
~EL28 0, 10
i & Ay (10)

where @? is the separation constam. Equation 9 is the
equation that describes the motion of a simple harmonic
oscillator. Equation 10 is the one-dimensional time-
independent wave equation for a non-homogeneous
medium.

Equation 9 has a significant physical implication: the
frequency of the wave in a non-homogeneous medium is
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constant, the effect of the inhomogeneity is reflected only
upon the wavelength and the velocity.

EXAMPLES
A medi ith varying i ion

In an optically non-homogeneous medium, the refractive
index in not constant throughout the medium, but could
depend upon many variabales. For simplicity, we will
assume a one-dimensional dependence of the refractive
index:
= dv___c _dn

W=56 M g n2(x) dx
Substituting Equations 11 into Equation 10 yields:

d*y 1 dn dy [am(x)]2 _

& a@adtlc | x2=0
If we know how the index of refraction depends upon
position, we can solve this linear differential equation for
the space function y(x).

(1n

(12)

The two independent solutions of Equation 12 take on the
form:

2()=A exp {i -fgfg @) dx’}

+B exp{—i %J: n(x") dx’} s (13)

where A and B are arbitrary constants,
Mechani in 2 medium of varying densi

In a medium of varying density, the velocity of a propagat-
ing sound wave is related to the density of the medium as:
2(y\—_B
vi(x) = 200 ° (14)

where B is the bulk modulus of the medium and p(x) is the
density of the medium. We will assume that the bulk
modulus is constant. For this situation, Equations 11
become:

dp(x)

_ &
v(x)_./a% and 92 =1 m%—. as)

Substituting Equations 15 into Equation 10 gives:
dy, 1 _1_dp() dy  p) ?
22 p® ax axt B 270
In the same manner as before, the general solution to
Equation 16 has the form:

(16)

2(x)=Aexp {i 7%]: V) dx’}

X
B gj’
* exp{—zm X JpT?)_dx’} an
where A and B are arbitrary constants.

Finally, in quantum theory, Equation 6 may be a modified
version of the Schrédinger equation, with v, the velocity,
representing the group velocity and y representing the
motion of the expectation value.
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2. The proof by direct substitution begins with Equation 7

Y(xt) = G(x - J: W) dc’] + F(x + J: W) df') ,

The second derivative with respect to position is:
?* o’G , o°F
YD) ="+,
22V =52 + 52
The first derivataive with respect to time is:

S =35 )+ 3£ ),

I
where u, =x+ L W) dr’ .
Taking the second derivative gives:

O e =G ()2, 9G v  PF 2 OF v
aﬁ“’("')‘ S - Tou ol ) Yo o
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: [9°G _9%G)\ [9*F &F
E‘.quauonﬁbc:com':’;s.(ax2 au§]+(8x2 o’ )

+19v|(dG _9G) , (9F _ oF
v ox||'ax ~ou_|t\ox du, ||
The terms in the round brackets vanish because:
d_odx 9 __1 d
0y Ouy OX  Oly T =ox
'3?
thus showing that Equation 7 is a solution to Equation 6
by direct substitution.
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Undergraduate Research - Making Physics Interesting
to all Students.
An Editorial by Rexford E. Adelberger

When invited to parties outside of the college where I
work, I don’t look forward to someone who does not know
me asking what I do for a living. When I say thatI am a
physicist, there is often an uncomfortable pause, and then
the somewhat apologetic response that they are very
interested in science, but it was not something that they
‘did’. My neighbors and friends are really bright and very
hard working, but for some reason, my studying physics
seems to have made me different and slightly weird in the
eyes of people who work in offices, industrial plants or
own their own small businesses. In my own view, I am
not really different; it is just that my passion is physics
while theirs is balancing books, selling insurance or
healing sick individuals. How, in the eyes of the nonaca-
demic world, did physics become a thing that only a very
few and somewhat special people can do. Why did I
decide to study and ‘do’ physics rather than the things my
neighbors did?

During my undergraduate years, the compulsory military
draft helped a lot. I found that studying physics was much
easier than getting drafted and having to fight on some
foreign shore a war which I was not too sure that I
believed was just. It wasn't physics as much as the very
distressing alternatives that kept me going. The same
might also be said for by decision to go on to graduate
school: it seemed a much better thing to do than to have to
work in a low paying job or killing people who I did not
hate.

At some time during my graduate study, physics became
the compelling factor rather than the alternatives. This
metamorphosis occurred at the point where I stopped
studying physics and started being a physicist. Being a
physicist was was alluring to me as the beautiful song of
the Lorelei was to the ancient boaters on the Rhine river,
When I began to understand something about nature
because of the experiments I designed, it was as if I were
playing with the Gods. Wow!! I thought that I was really
something special. Why did I wait so long to become a
physicist?

Spending those countless late night hours working
complex nasty thermodynamics problems and obscure
seemingly irrelevant mechanics exercises would have been
much more meaningful and reasonable if only I had been a
physicist as well. Maybe the reason that all my neighbors
stayed away from physics while they were in college is
that they never had a chance to be a physicist, their only
option was to study physics.

When I began my career at a teacher at the undergraduate
level, this revelation remained with me, but somewhat
buried by the reality of preparing lectures and making sure
that the lab equipment was working properly. As I talked
with my colleagues about my ideas, they reminded me that
only the best students can do research, Students first had
to prove themselves in the class room before they were
invited into the research labs. If they ‘passed the muster’,
they would work on the research projects that the faculty
were doing to get tenure and promotions. This was real

physics.

My insight into how to get young people interested in
physics received a significant dose of ‘fertilizer’ when I
went to teach in a small, low budget, high contact hour
private liberal arts college. The dean told me if there were
lots of physics majors at the college, then the budget and
the number of faculty would be increased to reflect the
number of students taking physics classes. I wondered if it
would be possible to have lots of students as apprentice
physicists rather than a few students taking advanced
physics courses and lots of people taking ‘physics for
people who do not want to take physics but have to’.

My experience of the last 20 years is convincing experi-
mental evidence that my early insight was indeed correct.
All sorts of students are fascinated by being physicists.
They come to our college study all sorts of things, but are
drawn to the excitement shown in the science departments
where young people are being scientists. What I did not
expect to find out was that doing research plays a signifi-
cant role in the retention and eventual success of the
student who, in the traditional evaluations of physics
students, would be labeled as a weak student. These
young people often seem to flourish in the real scientific
world and active participation in research gives them the
confidence to do the more traditional parts of the physics
curriculum,

The undergraduate research about which I am talking is a
special pedagogical strategy. Research is not just a reward
for the best students to do in their final year at the college
using specialized expensive equipment, but a deliberate
exercise that starts in the freshman year and is the common
thread that binds together the full 4 years of the physics
curriculum. This model was built on an idea presented to
me by Dudley Herschbach, a Nobel Laureate who, among
many other things, teaches undergraduate students at
Harvard. He told me that learning about nature is really
amazing. You can ask any sort of question to nature and it
answers you correctly. It never tells you things that are not
true. The problem we have is that we too often ask the
wrong question of nature or that the question we asked
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was not the one we thought we were asking. The difficult
part is to listen to the answers that nature gives. As we
cross examine nature and explore blind alleys, our
colleagues commend us even though we do not have
answers. Finally, when we ask sufficient and correct
questions, and consequently discover something new about
nature, the world applauds us.

Apparently nature want us to know how it operates. What
we have to do with students is to teach them to ask
questions and how to listen to the answers nature gives
them. This is certainly a different mode of operation than
teaching students a bunch of cold facts and asking them to
solve a series of problems whose answers are in the back
of the book. It requires the individual student to interact
with nature and to form a model of what is happening in
their own mind using the answers that nature has presented
to them. The responsibility and excitement of learning
belongs to the student!

It became clear to me that if you want first year under-
graduate students to become physicists, you can’t expect
them do the kind of research that one does for a Ph.D. or
for getting promotions and tenure. What the students have
to learn is to read journals, design experiments and ask
questions of nature. It amazes me how well written and
easy to understand the papers are that were written at the
turn of the century that appeared in journals such as
Physical Review and Philosophical Magazine. They can
be understood, with some help from the faculty, by most
beginning students. These papers are better written than
many of the text books that are currently on the book store
shelves.

It becomes our responsiblity to show students how to
model reality instead just working problems about the
‘frictionless and horizontal railroad’. They have to be
presented problems that do not have answers that can
looked up somewhere to judge if it has been worked
correctly. We have to provide a platform where the student
can gain confidence in the way that they understand
nature. This confidence can be achieved by presenting
their work to their peers in the lab as well as regional
meetings such as are sponsored by many SPS chapters.
Being a community of learners is much more attractive
than working problems in the quiet lonely surroundings of

the library or a dorm room.

To start an undergraduate research program one doesn'’t
need to get outside funding from the NSF or some presti-
gious private foundation. It is a matter of how we present
physics to our students and how we use the computers and
lab equipment that already exist in the schools where we
teach.

Students must to be allowed to make and learn from their
own mistakes. It amazes me how quickly you can turn off
a student by telling them the answer to their questions
rather than having them do an experiment and listen to
nature’s response to their question. When students become
accustomed to hearing about and working with things that
they do not completely understand, they are well on their
way to becoming a practicing scientists. The role of the
teacher in this system is to show the student to decide what
are important questions, and how to listen to and evaluate
the answers that nature gives. After all, there is no higher
authority in physics than nature itself.
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