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THE SPEED OF CARBON DIOXIDE BUBBLES RISING IN A
GLASS OF BEER

Brett Davis and Brian Lightbourne
Physics Department
Valdosta State College

Valdosta, GA 31698
received April 20, 1991

ABSTRACT
The velocity of carbon dioxide bubbles rising in beer was measured using a stop-frame VCR. Our analy-
sis of the motion gave a radius of (3.1 £.1) x 104 m. This result is approximately ten times larger than
the calculated radius reported in a perviously published analysis of the bubble motion. 1

1) W.A. DeZarn and M.A. Ward, The Journal of Undergraduate Research in Physics, 7, 1989, p. 49

INTRODUCTION
The motion of carbon dioxide bubbles rising in beer was
analyzed by DeZam and Ward ! who stated that the radius
of their bubble was on the order of 3.3 x 10-5 m. This
seemed to be a very small value, so we decided to dupli-
cate the experiment in order to investigate the bubble
size.

In carbonated drinks, carbon dioxide is dissolved in the
liquid. When the sealed container is opened, the pressure
decreases to a level where CO3 is released as bubbles.
The bubbles begin to travel upward due to their buoyancy
and accelerate until terminal velocity is reached. Termi-
nal velocity was achieved almost instantaneously for the
bubble diameters we observed. This behavior was also
noted by C.F. Bohren. 2

EXPERIMENTAL DESIGN
The beer was poured into a graduated cylinder which was
illuminated by placing it on a slide viewing table. The
position of the bubble was recording using a stop-frame
video recorder with a frame speed of 1/30 of a second.
The volume markings on the cylinder, converted to mks
units, were used as a distance scale.

We obtained a rough estimate for the radius of the bub-
bles by viewing photographs of a ruler in the beer and

Brett Davis is a graduate of Valdosta State College. He
is currently pursuing a Masters’ degree in electrical engi-
neering at the Southern College of Engineering. Brian
Lightbourne graduated from Valdosta State College this
year. He plans to return to Jamacia to start an agricultu-
ral business.

utilizing the stop-frame VCR. Our visually estimated
value for the radius was (5+2) x 10 m.

The position of the bubble was graphed as a function of
time to determine the velocity. We found that some bub-
bles had a constant radius and velocity while others un-
derwent an increase in size resulting in an acceleration.
The change in pressure that the bubbles experience as
they travel from the bottom to the top of the graduated
cylinder is less than 0.1% of atmospheric pressure.
Since this difference is negligible and the temperature of
the liquid is uniform, it is reasonable to assume that a
bubble can rise with a constant pressure, temperature,
volume and number of moles, resulting in a zero acceler-
ation. When we first poured the beer, we saw bubbles
whose radius apparently increased. We assumed that this
had to do with the concentration of carbon dioxide in the
beer, which decreases with time after the beer is opened.
We believe that the explanation given by C. F. Bohren 2
is correct: the acceleration is caused by diffusion of COy
into the bubble which increases the radius and therefore
the buoyant force. This paper, however, is restricted to
the case of a bubble with a constant radius and velocity.

RESULTS
Figure 1 is a plot of position versus time for a typical
bubble. It had zero acceleration since a straight line gave
an excellent fit to the data. The average velocity of the
bubbles used for the analysis was (7.3£.1)x10-4 m/s.

DETERMINATION OF RADIUS
The equation of motion for is given by Newton's second
law. The net force has two parts to it, the buoyant force
and a drag force.
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Figure 1
Typical distance time graph for one of the selected bub-
bles. The straight line shows that it is moving at a con-
stant speed,

The buoyant force on the bubble is:
Fb =V (pf - po) 8 (6]

where V is the volume, p, is the density of the surround-
ing beer, po, is the density of the carbon dioxide and g is
the acceleration due to gravity. The density of the CO,
in the bubble is approximately 500 times less than that
of beer, therefore the p, term is negligible and can be

dropped.

As an object travels through a fluid, a drag force is exert-
ed on it. This force is different depending on whether the
fluid flow is laminar or turbulent. In order to determine
which case applies, it is necessary to calculate the Re-
ynolds number, R, for the flow:

R=2p;vr/n @)
Variabale  Description Value

po  Density of COp 1.98 kg/m3

pf Density of beer 1.007x103 kg/m3

g Accel. of gravity 9.8 m/sec?

n Viscosity of beer 1x10-3 Pa sec

| Viscosity of alcohol ~ 1.2x10-3 Pa sec

Table 1
Values of variables used in this experiment.

where v is the velocity, r is the radius of the bubble and
1 is the viscosity of the beer. We took the viscosity of
beer to be that of water since beer is approximately 95%
water and alcohol has approximately the same viscosity
as water 3,5,

Table 1 shows the values for each variable used in the
calculations. The Reynolds number we calculated using
our initial estimate for the radius was 73. A sphere trav-
eling through a fluid with a Reynolds number higher
than approximately 10 requires the use of the equation?:

Fr“—'pfﬂszDVzn 3)

The drag coefficient Cp was determined from a graph of
drag coefficient vs Reynolds number for a sphere travel-
ing through a fluid 4. The graph was approximately lin-
ear for the region where the Reynolds number was less
than 100. A least-square fit to the linear region of the

graph yielded:
Cp =-1.14 Log(R) + 3.43 4)

From this equation we were able to calculate a value for
the drag coefficient of the bubble. Since the bubble
reaches terminal velocity almost instantaneously, the
drag force (Equation 3) and the buoyant force (Equation 1
with the p, dropped) can be set equal to each other and a
solution obtained for the radius:

r=3Cp v2/(8g) (5)

The radius was calculated from Equation 5 and substituted
into Equation 2 to find a revised Reynolds number and
the resulting drag coefficient was obtained from Equation
4, With this drag coefficient, a new radius was found
from Equation 5. This iteration process was continued
until the radius converged. Table 2 shows the values ob-
tained for each iteration. A value of (3.1+.1)x104m was
obtained for the radius

Our calculated value for the radius is much closer to the
visually estimated radius osf 5.0x104m than DeZarn and
Ward's 1 value of 3.3x10°m. We believe their value is
too small. A bubble of that radius would be extremely
difficult to observe. We did not find any evidence for the
occurrence of any unusual thermodynamic processes. If
we can obtain video equipment with sufficient resolution
to allow the direct measurement of the radius, we plan to
do further experiments focusing on the dynamics of bub-
bles that increase in size.
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COMMENTS BY AUTHOR OF
ORIGINAL PAPER

The major difference between the analysis of this experi-
ment and what we did seems to be the value used for the
viscosity of the beer. We got our value from the brewer
at Stroh’s Brewery. They told us that the value varied
quite a bit among different beers. We used the value for
the particular brand and style of beer we used in the ex-
periment. Our value of 15x10™ Pa sec. is a factor of al-
most 70 different from the value assumed in this experi-
ment. The bubbles in our brand of beer seemed to be
traveling at almost twice the speed as the ones observed
in this experiment.

Perhaps the argument about the viscosity needs review-
ing. At an extreme, the human body is 92% water, but
definitely has a different viscosity than that of water. In
a more serious tone, if one just examines closely the way
that beer and water pour into a glass, one can see a differ-
ence in their flow.

William DeZarn  5/30/91
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ATOMIC CONCENTRATION ANALYSIS FROM
RUTHERFORD BACK-SCATTERING SPECTRA OF SAMPLES
IMPLANTED TO HIGH DOSE

Ken Jensen *
Physics Department
Wright State University
Dayton, OH 45435
received May 7, 1992

ABSTRACT

A procedure for extracting stoichiometry relationships and atomic concentrations as a function of depth from
Rutherford back scattering spectra of samples implanted to high dose is described. These relationships are
applied to implanted SiO, samples by making assumptions about the post-implantation concentration in

the sample.

INTRODUCTION
Rutherford back-scattering occurs when the collision be-
tween two objects is mediated by an inverse square force
law such as that between two point charges. The final en-
ergy of the objects involved in the scattering can be de-
duced from the scattering angle and the usual energy and
momentum conservation relationships for a two-body
collision. 1 In Rutherford Back-scauerinF Spectrometry
(RBS), a beam of ionized atoms, having fixed mass and
incident energy, are directed onto a target, where they un-
dergo collisions with the nuclei of the atoms in the tar-
get. The energy of each back-scattered particle is detected
at a fixed angle. The number of back-scattered particles
having a given energy is plotted vs that energy to pro-
duce the RBS trum. The energy detected for each
back-scattered 1on also reflects the frictional’ energy lost
to electrons while it goes into and comes out of the tar-
get material.

Figure 1 show two typical RBS spectra. The horizontal
axis (channel number) is the energy of the incident parti-
cle. The yield is related to the number of target atoms
per cm2 and the energy is related to the depth of the at-
oms in the samplel. If the sample has a constant densi-
ty, these relationships can be combined to give a volume
concentration as of function of depth.

Ken Jensen recently acquired a B.Sc. in Engineering
Physics. This work is a summary of the project required
for the awarding of that degree. The au:for is presently a
Project Engineer at Copeland Corporation, doing finite
element analysis.

The leading edge is characterized by a near vertical in-
crease in yield in the spectra and is the point at which the
RBS spectrum first shows the presence of an element in
the sample. Back-scattering does not occur from the ele-
ment at energies above the point of this leading edge.?
The yield at energies lower than this leading edge result
from back-scattering from other atoms in the sample.

The sample whose spectrum is shown in Figure 1, SiO3,
is not monatomic. To understand how the different ele-

Figure 1
2 MeV Rutherford back scattering spectra for un-
implanted Si0; (solid boxes) and SiO3 implanted with
Si (open boxes).
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ments effect the spectra, one has the following rules:
1) Heavier masses have a leading edge at higher energies
due to the kinematics of two body scattering 3
2) High atomic numbers give high yield due to the de-
pendence of scattering cross-section on the atomic
number.
These effects can be seen in Figure 1 by looking at the
un-implanted sample (data indicated by the solid circles).
Since Si is more massive than O, the leading edge for Si
is at channel 550 while that for O is at channel 350. If
the yield between channel numbers 400 and 500 is ex-
trapolated back to channel 100, all counts below that line
are due to back-scattering from Si deep inside the sample.
The counts between channel 100 and 350 that lie above
the extrapolated line are due to back-scattering from oxy-
gen.

The open square data are for a sample of SiO7 which was
implanted with 8 x 1017 Si atoms per cm? at 135 keV.
This causes a compositionally non-uniform sample in
the depth profile. Since the sample's atomic concentra-
tion is non-uniform in depth, the energy loss per unit
depth is also non-uniform, causing a varying depth per
channel relationship (the energy loss is proportional to
channel number). This effect can be observed by notic-
ing the 'hump’ in the implanted sample between channels
400 and 500. This 'hump' is due to an increased concen-
tration of Si atoms at this depth. These additional atoms
cause the energy loss to change from what it would be if
the extra atoms were not present. The additional Si at-
oms also cause the yield from oxygen in the implanted
sample to have a small yield value between channel 250
and 300. This non-uniform energy loss has caused a
problem in analyzing the concentration as a function of
depth in this type of sample.

We have developed a fast, simple method for analyzing
such spectra. First, a procedure was developed to calcu-
late the atomic fractions and stoichiometry directly from
the RBS spectrum. Second, some physically reasonable
assumptions are made about the concentration relation-
ship of the atoms (Si and O). Using these assumptions,
one can deduce a depth distribution and volume concentra-
tion for the implanted atoms (Si). Once the analysis is
completed for the Si part of the yield, one can repeat the
procedure for the oxygen part of the yield from the RBS
spectrum. If the assumptions make are physically cor-
rect, the concentration as a function of depth should be
identical for the two parts. We found that two such as-
sumptions do indeed result in self-consistent depth distri-
butions for the implanted Si, but that the depth distribu-
tions are no unique.

THEORY
The sample was divided into its two constituents: the
subscript 'a’ refers to the Si and subscript ‘b’ to the oxy-
gen. We further divided the sample into layers parallel to
the sample surface. The yield of the back-scattering spec-
trum from element 'a’ in a layer with index 'i' was ex-
pressed as:4

B 0, QAE;f,;

= . m
Y cos [

where o is the Rutherford scattering cross-section for
scattering from element 'a’, Q is the solid angle subtend-
ed by the detector, Q is the number of particles incident
on the sample, 8; is the angle between the sample nor-
mal and the incident trajectory, AE,; is the energy inter-
val corresponding to particles back-scattered from element
‘a’ in layer '1', fy; is the atomic fraction of element 'a’ in
layer 'I" and [€42P]; is the stopping cross-section fraction
for an ion passing through a mixture of elements 'a’ and
'b' which scatters from element 'a' in layer 'i'. The kine-
matic factor, K, affects the yield only through the stop-
ping cross-section factor (see Equation 2). Equation 1 is
specifically written for yield from atoms of type 'a'.
Those variables having a subscript 'a’' will take on differ-
ent values if the yield from atoms of type b’ are consid-
ered.

The stopping cross-section factor gives the energy lost to
electrons weighted by the number of atoms in the target
which an incident ion encounters. This is a function of
the energy of each particle and the geometry of the path
taken. The surface energy approximation assumes that
this loss rate is constant with each of the in-going and
out-going paths. Ignoring the layer designation, this is
expressed as:3

K,e®E) e®KE)

€)=
4 cos6; g cos6,

@

where K, is the ratio of the energy ion before and after a
collision with an atom of type 'a’, €2b(E) is the stopping
cross-section for an ion moving with energy E through a
material made up of 'a’ and 'b' atoms. 03 is the angle be-
tween the sample surface normal and the back-scattering
trajectory.

The Bragg rule 6 says that stopping cross-sections for
mixtures can be found from elemental stopping cross-
sections by:

e(E,); = f,; €'(E) + f,; €°(E,)

©)
e(K,E ) = f,; e"(K,E,) + fy,; e2(K,E,) ,
Combining equations 2 and 3 yield:
[ =f,; [e2) +f,; [ , @)
where
] K, e*E,) N e"(K,E,)
cosf; cosf,
®
K,e"E) €"(K,E)
[e?) = .

cos0,; +C0892

Equation 5 may be interpreted as the stopping cross-
section factor of the respective element. These values are
independent of the depth at which the scattering occurred
and of the local composition. They do depend on the fact
that they were scattered from an atom of element 'a’.
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Equation 5, on the other hand, shows directly the varia-
tion in stopping power caused by varying the composi-
tion.

Substitution Equation 3 into Equation 1 gives an expres-
sion for the yield:

B Oy Q AE; ©)
" cos, [ed + S(eD)]
wh
ere Si is the stoichiometry, (see Equation 8).
This expression contains parameters that are readily ex-

tractable from the RBS spectra except for the stoichiome-
try. The stoichiometry can then be found by rearranging
Equation 6:

_ 0, QAE,; - A,; ] cosh,

S.

cosf; A,; s‘.’ @

The stoichiometry is obtained by comparing the spectra
of an un-implanted sample with known stoichiometry
and the spectra of an implanted sample. In that case,
0a,L2, AE,; and cos01 divide out since they are the same
for both spectra. Once the stoichiometry for each chan-
nel has been calculated, the atomic fractions are found by:

£.
Sie

b ®
1=fai+fbi .

The energy width of a layer is given by:
ab
AE,; =[N, = [ Nt . )

where N is the total number of atoms per cm2 for each
layer, Ny is the volume concentrations in a layer 'i'
whose thickness is t;.

The stopping cross-section factor for each layer can be
calculated from Equation 3 using the atomic fraction de-
duced from Equations 8. The stopping cross-sections fac-
tors then can be used along with Equation 9 to find Ng;.7
By making some reasonable assumptions about the
atomic densities in an inhomogeneous target, such as
that shown in Figure 1, we can infer the concentration of
the element of interest in the sample and the depth at
which this concentration lies. Such assumptions might
include: a) that the atomic concentration of oxygen in
implanted SiO7 remains constant, or b) the total number
of atoms/volume remains constant. If assumptions
about the concentration can not be made, the RBS spec-
trum can be broken up into energy intervals having the
same number of atoms per cm2. These intervals are not
of a fixed thickness. Since most materials are made of of
atoms that are nearly close packed, the thickness intervals
will be within a factor of 2.

ANALYSIS OF RESULTS
Figures 2 shows the stoichiometry as derived from the Si

and oxygen portions of the spectrum shown in Figure 1.
The trend of the stoichiometry is the same, even though
the scaling is different. This indicates that the procedure
used to deduce the stoichiometry does not depend on
which constituent of an inhomogeneous sample is used
in the analysis.

Figures 3 and 4 show that the stoichiometry of the sam-
ple is independent of the assumptions made about the
atomic concentration. Figures 3 shows the concentration
as a function of depth. The volume concentration vs.
depth is independent of whether the Si or oxygen portion
of the spectrum is used. This based on the assumption
that the oxygen concentration was unaffected by the im-
plantation of the Si.

Figure 4 shows the volume concentration vs depth de-
duced from the back-scattered yield from Si atoms. These
results are based on the assumption that the total number
of atoms in a given volume is constant.
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The oxygen/silicon stoichiometry vs channel number for
8i07 deduced from the back scattered yield. The top
graph, where sample surface is located at channel 550, is
the yield from Si atoms. The lower graph is deduced
from the yield of oxygen atoms. The sample surface is
located at channel 340.
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The results indicated that the assumptions we made about
the concentrations are self consistent. When the results
of our assumptions are com to results derived from
Monte-Carlo type methods®, we found some inconsisten-
cies.

Comparison of the concentration vs depth curves deducted
from either the oxygen or silicon RBS yields in Figure 3
or a similar comparison in Figure 5 show that the results
for a given assumption about the density to be consis-
tent. This justifies the internal reliability of the proce-
dure to give the proper trends in the data. Comparison of
the yields for the different assumptions about density
(Figure 3-top and Figure 4-top), however, show that the
maxima occur at different depths, that the range of the
implanted ions are different and that the absolute values
of the concentration differ.

This indicates that the procedure will work with any arbi-
trary assumption made about the atomic densities and
that the concentration is numerically very sensitive to the
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Volume concentration of Si vs. depth in the implanted
8i02 sample deduced from back scattering. The top fig-
ure is the concentration deduced from back scattered yield
from Si atoms and the bottom figure from the back scat-
tered yield from oxygen atoms. These results are based
on the assumption that the implantation did not affect
the oxygen distribution.
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Volume concentration of Si vs. depth in the implanted
8i02 sample deduced from the back scattered yield . The
top graph is the concentration deduced from the yield
from St atoms and the bottom graph from the yield of
oxygen atoms. The results are based on the assumption
that the total number of atoms per depth stayed constant,

assumption made about atomic density. It be necessary
to find a way to make reliable determinations about den-
sities to be able to use the procedure to extract concentra-
tion-depth profiles with numerical accuracy.
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ABSTRACT

Energy transfer between two optical pulses overlapping in time and space inside a ZnSe sample was in-
vestigated. A mode-locked, Nd:YAG laser provided high intensity pump and low intensity probe beams.
Changes in gain in the probe were observed as the input intensity and relative arrival times of the pump
and probe beams were varied. Accurate analysis was facilitated by careful characterization of the laser out-
put. A numerical model of the energy transfer process was developed based on the Transient Energy
Transfer theory. This model, implemented using a personal computer, compared favorably to the experi-

mental results.

INTRODUCTION
Two optical beams crossing in a nonlinear medium pro-
duce an interference pattern that can induce a refractive in-
dex grating. Energy can be transferred from the stronger
to weaker beam if there is a shift between the 1phas».“: of
the interference pattern and the index grating." The shift
may result from a non-local effect, such as in photo-
refractive materials,!»2 or from a local effect if the inten-
sity of the incoming beams varies in time.

In poly-crystalline ZnSe, the photo-refractive effect does
not produce net energy transfer because of the random or-
ientation of the crystallites. However, if short pulses are
used, a transient index grating can be produced by the
generation of free charge carriers that transfer energy be-
tween the pulses. This mechanism is known as Tran-
sient Energy Transfer (TET).

To explore this effect in ZnSe (a wide gap II-VI semicon-
ductor), a pump-probe experiment was conducted using a
10 Hz mode-locked Nd:Y AG laser with frequency dou-
bling which produced 25 ps pulses at 532 nm. Individual
pulses were optically separated into an intense pump, a
weak probe and a sampling beam. The relative arrival
time of the pump and probe at the crystal and the intensi-
ty of the pump were varied.

The TET theory was implemented on a personal comput-
er using a fourth order Runge-Kutta numerical scheme.
The numerical results were compared with experimentally

Perry Beissel, Tom Rossman and Chris Watrud graduated
from the United States Military Academy in June 1991
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now serving as Second Lieutenants in the army. They
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obtained data in order to determine the viability of the
model.

THEORY
The energy transferred from a strong pump L%a weaker
probe was modeled using the TET theory,!3# in which

the free carrier generation mechanism is two-photon ab-
sorption TPA). Two light pulses of wavelength A
crossing with an angle 26 develop a transverse intensity
interference pattern whosesspaﬁal period A (See Figure 1)
is given by the equation:

A (1)
A= G
2 sin®

Inside the semiconductor, the intensity interference pat-
tern generates a matching pattern of free electrons and
holes through the TPA process. In turn, the spatially va-
rying free carrier population produces a variation in index
of refraction through the Drude-Lorentz model,® resulting
in an index of refraction (phase) grating that extends into
the medium.

Each beam experiences diffraction as it passes through
the phase grating, scattering light into several diffraction
orders on either side of its incident direction (zeroeth or-
der). Because the phase grating is written by the two
beams, the geometry of the situation guarantees each will
diffract some light (in first order) into the other. Light
diffracted into the first order suffers a 90 degree phase
shift with respect to the zeroeth order.> Therefore, as the
two beams propagate through the medium, they accumu-
late phase-shifted light that changes their net phases (but
not necessarily their amplitudes).

If the input beams are of unequal intensity, a net phase
difference between pump and probe beams develops with
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Figure 1
Interference pattern of two coherent beams of light cross-
ing in a medium at an angle 26. The period of the inten-
sity pattern A is related to the crossing angle and wave-
length of light according to Equation 1. A matching
pattern of free carriers will be generated through two pho-
ton absorption.

propagation distance in the crystal. As a result, the inter-
ference pattern shifts transversly in phase (toward the
weaker beam) as the beams move deeper into the crystal.
If recombination of the free carriers in the semiconductor
is instantaneous, the phase grating will keep pace with
the shifting interference pattern and no net energy transfer
occurs. However, if there is a finite recombination time,
the phase grating will lag the interference pattern. The
phase lag between the interference pattern and the phase
grating results in energy transfer from the strong to weak
beam. The greglest energy transfer occurs for a phase dif-
ference of 90°.

The evolution of similarly polarized beams crossing in
ZnSe is modeled by the following first order differential
equations. These are derived by application of the slowly
varying envelope approximation to the wave equation
with sources that include third order nonlinearities in the
fields (two photon absorption, ncgllinear refraction) and
interaction with the free carriers:

cos0 %Az ==27 N, ABsin(¢-v)

~[o+ B,(A% + 2 BY) + 5, N,] AZ

d 2 @

~lo+ By(2 A%+ B) + 0 N, B?

cosO

d A B
003973=‘yl Nz(E_K) COS(¢—V)
- B, (A%-BY.

A and B are the amplitudes of pump and probe beams,

¢ = ¢ — ¢4 is the difference in phase between probe and
pump, and z measures the depth in the crystal along the
bisector of the two beams. Ng and N7 are the Fourier
components of free carrier densities as described in the
next paragraph. The constants found in these equations
and others are given in Table 1.

The free carrier concentration is most conveniently de-
scribed in terms of a "DC" background level Ng and a
modulation N7 of period A and phase v:

N=N°+2N2cos(2n:%+v). @)

The x coordinate measures transverse position in the
cr:;rstal.3 The free carrier concentration will evolve accord-
ing to:

aNo BZ 2 2,2 202
—a-r'=m[(A + B“)" + 2A“ B“]

- Kz( Ni*&‘ ZN%)

dN, B,

2 2
T_W(A + B“) AB cos(dp—v) @)
-2K, N, N,
av B,

_ 2 o s
—a-l-_m(A + B°) A B sin(¢p —v) .

The pulses of light were taken to be Gaussian in time:
12
A=A exg —4In2 — | ,
Tp

(t— m}z] )
—|

B=B, ex{ —4 In2
T

P

where At is the time delay between pump and probe, and
Tp is the pulse length (FWHM).

The system of six coupled differential equations given by
Equation 2 and Equation 4 were solved self-consistently
using a fourth-order Runge-Kutta scheme implemented in
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Turbo Pascal on a personal computer. The pulses were
sliced into time steps which were numeri y propagated
through the 3.0 mm depth of the ZnSe sample used. The
codewasdcsignedsottmﬂwpumpandp'obcimmsiﬁes,
the delay between pump and probe, and the integration
step sizes (time and space) were adjustable. Stabilization
ofprobegainwasmedmsignalcmve:gemeofﬂwoode
as time and space steps were made smaller. The results
of the experimental beam characterization were applied to

i intensities of pump and probe and pulse
width, and the values of the material constants from
Table 1 were utilized. The parameters 81 and K2 are not
well known for this material, so they were treated as ad-
justable constants to bring the magnitude of the probe
gaigl at optimal delay into agreement with experimental
results.

EXPERIMENT
The experimental setup is shown in Figure 2. The
Nd: YAG laser output, at 10 Hz, is frequency doubled to
532 nm with an output energy of 35 mJ. The beam, af-
ter passing through a series of fixed and variable attenua-
tors, is split into sample, pump and probe beams. Ener-
giesofﬂmebeamsweremeasmedbymgy meters (D1
through D3, respectively) and recorded by a com|
through a GPIB interface. By removing the ZnSe sam-
ple, the input energies of the pump and probe beams
were calibrated against the sampling detector. The probe
delay was controlled by the position of a retroreflector
(RTR) mounted on a movable stage with position resolu-
tion of 10 um (0.066 ps in arrival time).

It is necessary for the pump and probe to overlap in time
and space for the energy transfer process to occur. Analy-
sis and alignment is simplified by using a spatially broad
and smooth pump, a relatively small probe, and a small
crossing angle between the beams. A 500 mm lens fo-
cused the probe to a spot size of 0.125 mm and the con-
densing doublet followed by a 1000 mm lens focused the
pump to a spot size of 0.75 mm. The crossing angle is
12.5°, which corresponds to an angle of 4.7° inside the
sample due to its high index of refraction.

Neutral density filters controlled the incident energies. A
pump intensity of 1-2 GW/cm? is sufficient for measur-
able energy transfer to occur.

Ref. Material Constant Value
9 Index of refraction (ng) 2.7
10  Attenuation coefficient & 0.6 cm1

11 Nonlinear ref. coeff 31) 10 cm/GW
12 TPA coefficient ($2) 5.5 cm/GW
13 "Drude” ref. coeff (y;)  1.6x10716 cm?

14 Free carrier cross-sec(Geh) 2x10718 cm?

15 Recombination rate (K2) 5x10-8 cm3/s

Table 1
Constants used in modeling Transient Energy Transfer in
ZnSe. Uncertainties are implied by the least significant
figure, except for K2 which has a larger uncertainty (see
reference).

Figure 2

Pulses of 532 nm light produced by the Nd:YAG laser are
split into three beams. The sampling detector (D1) meas-
ures incident energy on a pulse-by-pulse basis. Detectors
D2 and D3 measure pump and probe throughput energies.
A retroreflector (RTR) mounted on a translation stage
controls probe arrival time. ND: high power neutral den-
sity filters; L1-LS: fused silica lenses; VA: variable atten-
uator.

A Big Sky Multicam™ system was employed to deter-
mine the spot size and spatial profile of the two beams.
This system was used to facilitate the adjustments to the
optical elements needed to attain the desired spot sizes
stated above. The camera system also verified the Gaus-
sian shape of the beam's spatial profile at the crystal.

The nominal temporal pulse width of the frequency-
doubled beam is about 25 ps based on estimates derived
from the manufacturer’s specifications. It was actually
measured using two methods. The first method em-
ployed a single-pulse autocorrelator which encodes the
temporal extent of a pulse along one spatial dimension.
Using this instrument we measured the pulse width to be
p=(23+2)ps with negligible pulse to pulse varia-
tions. The uncertainty arises from estimating the
FWHM of a reticon readout on a CRT storage oscillo-
scope.

The second method utilized the known nonlinear trans-
mission characteristics of ZnSe to calculate the pulse
width. This method assumes that the dominant non-
linear attenuation mechanism of an intense pulse of light
in ZnSe is due to two-photon absorption (TPA), accord-
ing to the equation:12

d 2
—=-al-B,I".
%= oI-F ®

If the pulse is Gaussian in space and time:

2
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with spot size @ and pulse width (FWHM) Tp, then the
energy transmission Eqy/Ejn can be computed from
Equation 6 by integration in space and time. Using the
values of o and B from Table 1 and a calculated reflec-
tivity of R = 0.21 at both front and back surfaces, we
computed the curve shown as a solid line in Figure 3.
This curve depicts the inverse transmission (Ejn/Eqgyt) as
a function of peak intensity. Note the curve makes no
assumptions about the values of ® or Tp; these cancel
out of the calculation. Only the Gaussian forms are as-
sumed.

The inverse transmission 1/T for a series of nearly equal
pump pulses (input energy Ejp) was measured and placed
on Figure 3 (shown as open squares). The vertical place-
ment is fixed, while the horizontal placement was adjust-
ed to give the best agreement between data and the curve.
From this placement we deduce the peak input intensity
I, related to input energy by:

I *
°" re? 1067, ®)

which follows from the Gaussian forms assumed. Since
the pump spot size @ is directly measured the only un-

known is the pulse width tp. The determination of the
pulse width utilizing nonlinear transmission characteris-
tics of ZnSe yielded a value of Tp = (24.5 £ 2) ps. We

employ a value of tp = 24 ps for analysis.

Twenty pulses were fired at each delay and attenuator set-
ting during the course of the experiment. For each shot
the sampled energy (and through calibration, the input
energy), pump throughput energy, probe throughput en-
ergy, and delay stage setting were recorded. Probe
throughput was recorded periodically with the pump
blocked to establish a baseline for gain calculation.
P:llses were manually triggered at about five second inter-
vals.

Two studies were performed. First, with a fixed pump
energy level (esablishing a nominal incident intensity of
about 1 GW/cm#), data was recorded at delay times span-
ning 90 ps, centered roughly on the point of maximum
gain. Second, with the delay set at peak gain, pump en-
ergy was adjusted using the variable attenuator.

RESULTS
The results of our first gain study are shown in Figure 4.
For each delay setting, the twenty data sets were refined
by rejecting input pulses that fell outside a window of
about 5% in energy, with a center energy of about 300
WJ for the input pump pulse. This translates to a peak
pump intensity of 1.25 GW/cm?. Typically half the
pulses fell inside the window. The gain of each probe
pulse fired with the pump present was calculated with re-
spect to the probe throughput with pump blocked. The
mean and standard deviation of the probe gain at each de-
lay setting are plotted in Figure 3. Negative delay times
correspond to arrival of the probe after the pump.

As expected, at delays comresponding to widely separated
pump and probe arrival times (>50 ps from the point of

peak gain), there was no effective interaction between the
two and a gain of unity was observed. A peak gain of
3.7+ 0.6 was observed, and this delay setting is taken as
the arbitrary zero delay point. The gain fell steeply on
either side of this point, with a FWHM of about 15 ps.
An interesting effect was seen at delay settings of -15 to
-40 ps in that the gain was actually less than unity. This
is to be expected igglnough free carriers remained in the
sample to cause attenuation of the probe.

The code developed was run through a scan of probe delay
settings in order to obtain a theoretical gain curve. This
scan resulted in a curve with the same basic shape as the
experimental data, having a large peak and a region of ab-
sorption on one side, as shown in Figure 5. The essen-
tial difference between the code plot and experimental data
plot is the width of the gain peak. The values of §1 and
K2 that gave the best match of the peak gain and maxi-
mum absorption to the data were:

B1: 10 cm/GW,
K2: 36x lO‘gvcm:’,fs.

Note that the code predicts peak gain will occur when the
probe pulse arrives about 10 ps before the pump pulse.
With a suitable diagnostic (such as a streak camera) this
prediction could be tested.

In the second part of the experiment, the delay was set to
nominal zero and gain was measured as the pump intensi-
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Figure 3
Inverse transmission curve for 532 nm pulses passing
through ZnSe. Solid curve is a calculation based on
propagation of a Gaussian pulse through a 3mm deep
sample of CVD ZnSe. Free carrier absorption is not in-
cluded. Solid squares are measured inverse transmission
values. Horizontal placement of the data on the curve re-
quires a pulse wldtf of about 24 ps (FWHM) through
equation (8).
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ty was varied by adjusting the variable attenuator. For
each attenuator setting, the twenty data sets were refined
as described above, and using the remaining data the
means and standard deviations of the gains were again cal-
culated and plotted against the calculated input intensig.
The results of this investigation are shown in Figure 6.
As expected, the gain climbs rapidly as peak pump inten-
sity is increased.

The code was also used to perform a study of probe gain
versus pump intensity. The delay was set for maximum
gain (as in the experiment) and the pump intensity was
varied. The result is shown as the solid curve in Figure
6. Note the code predicts both greater absorption and
greater gain than observed.

SUMMARY
Under the proper conditions, energy transfer occurs be-
tween pump and probe beams interacting in ZnSe, a wide
gap II-VI semiconductor. Gain in the probe beam varies
with pump intensity and relative arrival time between
pump and probe. Reasonably good agreement between
the code results and the data provide support for modeling
the beam coupling interaction with the transient energy
transfer theory. In particular, the values of B and K2
that gave the best match in peak gain and absorption as a
function of probe delay were quite reasonable. However,
deviations between the data and the theory are significant
enough to cause us to re-examine the assumptions. In
particular, the difference in the width of the gain curves
in Figures 4 and 5 and the mismatch in gain at lower and
higher pump intensities (Fig. 6) indicate the pres-
ence of some systematic error. One possible source is

4 |
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Figure 4
Experimental probe gain as a function of delay between
arrival of pump and probe in ZnSe. Negative delay corre-

sponds to probe arriving after pump. The zero is arbitrar-

ily set at peak gain. Peak pump intensity is approxi-
mately 1.25 G Icmf
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Figure 5

Theoretical probe gain as a function of delay between ar-
rival of pump and probe in ZnSe. Negative delay corre-
sponds to probe arriving after pump. Appropriate experi-
mental parameters were used in performing the
calculations.

the unverified assumption that the pulses were Gaussian
in time. Another is the assumption in the code that the
two pulses are fully coherent. Future work with both
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Figure 6
Probe gain as a function of peak pump intensity. The
solid curve is predicted by the Transient Energy Transfer
theory. Data are indicated with markers and error bars.
Delay between arrival of pump and probe has been set for
maximum gain in both experiment and theory.
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ABSTRACT
Video-recording techniques were used to record the motion of a simple undamped pendulum with large-
angle displacements and determine the trajectory of the pendulum bob. A comparison was made with nu-
merical solutions to the problem. There was good agreement between theoretical and experimental re-

sults.

INTRODUCTION
The pendulum system is one topic that all students of
physics study at one time or another. Generally it is
used to illustrate simple harmonic motion. The mathe-
matical analysis that is typically done in freshman phys-
ics is a linear approximation to the real motion. It only
holds true for small angle displacements of the pendu-
lum. The description of large-angle displacements require
solutions to a non-linear second-order differential equa-
tion,

2
a6 g .
PTNE Si M

where 0 is the displacement angle of the pendulum from
vertical, L is the length of the pendulum and g the accel-
eration due to gravity. The solution for this case where
the angle 8 is not « 1 radian gives a period that can be
approximated as:
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where o is the maximum displacement angle. This
shows that the period is dependent upon the amplitude of
the motion.

The motion of a pendulum with large angular displace-
ments has been recorded using a helipot! and stroboscop-
ic photography 2. In this paper, we use video-recording
techniqucs to study the large-angle undamped pendulum
motion. These techniques, while fairly new, have been
used in other contexts. For example, the rise of carbon
dioxide bubbles in a §1ass of beer have been monitored
using this technique.” Because of technological im-
provements and reductions in cost, video cassette recor-
ders and video cameras are now practical tools in the un-
dergraduate laboratory.

THE EXPERIMENT
The motion of a simple pendulum was recorded using a
camcorder and a VCR®. Data were taken for pendulum
lengths of 1 and 0.5 meters with initial displacement an-
gles of 5, 10, 25, 40 and 50 degrees. The smaller angle
data were used as a control to insure that the data taking
procedure and subsequent comparison with the numerical
solutions were behaving as expected.

A protractor mounted behind the pendulum string provid-
ed the angle measurements. Several oscillations for each
amplitude were recorded. The angular position of the bob
during the oscillations was then manually read from the
video monitor using the frame advance feature (1/60 sec.
increments) of the VCR. The results were entered into a
spreadsheet and stored on disk for later use.

RESULTS
The solution to Equation 1 was obtained using a fourth-
order Runge-Kutta numerical method.5 This method cal-
culated the derivative of the function four times for each
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time step: once at the beginning point, twice at the mid-
point of the step and once at the end of the step. This
method is a superior algorithm for solving second order
differential equations-6

In general, there was good agreement between the theoret-
ical predictions and the experimental data as recorded by
the camcorder. Figures 1 - 3 show our experimental data
(square points) and the numerical solutions to equation 1
using the Runge Kutta algorithm (line). Reading the
data from the video recording resulted in not having each
graph starting with the pendulum at rest. The theoretical
fit to the data was started with the same initial conditions
as those of our data.

Figure 1 is a comparison of the data with a 5° displace-
ment (open data points) and a 25° displacement (solid data
points). This graph shows well that the period is (al-
most) independent of amplitude for small angles. Figure
2 shows what happens to the motion as the amplitude of
the motion becomes large. The open data points are for
the 5° amplitude motion and the solid data points show
the motion for an amplitude of 50°. The lines shown are
the numerical solutions to equation 1 with the appropri-
ate amplitudes as initial conditions. Both Figure 1 and
Figure 2 show data for a pendulum of length 0.5 m.

Figure 3 is a comparison of the data for a 1.0 meter long
pendulum. The open squares are for an amplitude of 10°
while the solid data points are for the motion with an
amplitude of 50°. The solid line is the numerical solu-
tion for the 10° initial condition and the broken line the
numerical solution for the 50° initial condition. The cor-
relation between experimental and numerical data is still
good, but not as close as in Figures 1 and 2. We believe
the discrepancy was due vibrations in the apparatus and
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Figure 1
Data for a pendulum of length 0.5 m. The open data
points are for an amplitude of 5 °( amplitude scale on
left) and the solid data points are the motion for an am-
plitude of 25 ° (amplitude scale on right). The solid line
is a numerical solution to Equation 1.

0.0 0.4 08 i3 16
Time in seconds
Figure 2
Displacement vs. time for a 0.5 m. long pendulum. The
open data points (vertical scale on left) are for an ampli-
tude of 5 ° and the solid data points vertical scale on
right) are for an amplitude of 50 . The lines are numeri-

clﬁ:olutions to Equation 1 for the appropriate ampli-
tuaes.

uncertainty in the initial conditions of the numerical inte-
gration.

Table 1 lists the measured periods for the motion and the
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Figure 3
Displacement as a fucntion of time for a 1 m. long pen-
dulum. The open data points (vertical scale on left) are
for an amplitude of 10° and the solid points for an ampli-
tude of 50 ° (vertical scale on right). The solid line is the
numerical solution for an initial displacement of 10" and
the dashed line for an an initial displacement of 50°.
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10 2.08 +.03 2.04 in Phys., 7, 1989, pp. 31 - 36
50 242+ 03 2.14
3. W. DeZam and M. Ward, Jour. Undergraduate. Res.
Table 1 in Phys., 7, 1989, pp. 49 - 52.

Measurements of period compared to predictions from
Equation 1

values calculated from Equation 2. Once again, there is
very good agreement. This equation worked equally well
for both lengths of the pendulum.

The generally good correlation between the experimental
data and the theoretical solutions make us believe that the
video recorded results give a good record of the trajectory
of the pendulum. We believe that the video recording
method used in this experiment is a reliable method for
studying the mechanical system of the pendulum,
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A TEST OF A MONTE-CARLO METHOD FOR
DIAGONALIZING HUGE MATRICES ¥
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ABSTRACT
An algorithm for approximately diagonalizing huge matrices was tested on some simple examples. The
algorithm involves randomly (Monte Carlo) choosing subset matrices of the eigenmatrix, diagonalizing
these subset matrices and averaging the results. The results tend to be good for most cases.

INTRODUCTION
Diagonalizing huge eigenmatrices is used in many quan-
tum physics problems. The quantum mechanical interac-
tion energies between electrons form an eigenmatrix
which can be diagonalized to yield the electrons' full
wave functions. The wave functions then may be used to
find position probabilities of the electrons. An eigenma-
trix of order 1023 could represent the quantum mechani-
cal wave function for all electrons in a rod the size of a
small pencil. However, diagonalizing an eigenmatrix of
order 1023 is a huge problem. It is not possible to ex-
actly diagonalize such an eigenmatrix in a reasonable
amount of time even on a very fast computer. The com-
puter that we used on this project would require about
1057 years, about 1047 times the age of the universe, to
do the job.

METHOD FOR DIAGONALIZING
The Monte-Carlo method for diagonalizing a matrix
breaks down the 1023 order eigenmatrix into something
much smaller, such as 1000 x 1000 matrix. The size of
these matrices are determined by the limitations of the
computer used to do the calculations. These smaller or-
der matrices, called subset matrices, built from the origi-
nal matrix, are diagonalized and the results averaged to-
gether. In this way, the diagonalization of a 104 order
eigenmatrix can be approximated using much smaller
subset matrices.!

Randy is a senior physics and mathematics major at Mor-
ningside College. He works part-time off campus as
well. After earning his degree, he plans to attend graduate
school in mechanical engineering at Iowa State Universi-

1y.

The Monte-Carlo method is used to randomly pick diago-
nal elements from the original matrix. The off-diagonal
elements are chosen from the intersection of two random-
ly picked diagonal elements. These randomly selected
elements are used to build the smaller subset matrices.

There are two conditions an eigenmatrix must meet for
this method to work: 2

1) The off-diagonal elements must be nearly constant,
2) no particular element can greatly deviate from the oth-
ers.

If these two conditions are not met, the results are poor.

For matrices with nearly constant off-diagonal elements,
one eigenvalue lies between each pair (ordered from
smallest to largest) of the diagonal elements of the ma-
trix. 3 But one eigenvalue, falling after the last diagonal
element, sometimes leaves the domain of the diagonal
elements.

This last eigenvalue poses a unique problem. The
strengths associated with all eigenvalues within the do-
main of diagonal elements can be shown to be indepen-
dent of the order of the subset matrices. The strength as-
sociated with an eigenvalue is found by squaring the
components of the corresponding eigenvector, adding
them together and taking the square root. The strength
associated with this last eigenvalue, however, is propor-
tional to the order of the subset matrix. Thus, the
strength associated with the eigenvalue falling outside the
domain of diagonal elements must be treated separately.
It is important to note that only eigenvectors have
strengths and that each eigenvector also has a unique ei-
genvalue associated with it.




VOLUME 10, NUMBER 2 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS 51

The program that diagonalizes the matrices was written at
Argonne National Laboratory 4. The programs that ran-
domly pick diagonal elements, set up the subset matrix,
find the strengths of the eigenvectors and store the eigen-
values and strengths for averaging later, coded in FOR-
TRAN, were written as part of this project.

An iteration consists of a run through the programs.
Each iteration yields eigenvectors, eigenvalues and
strengths calculated from each eigenvector for one subset
matrix. The eigenvectors, eigenvalues and strengths of
the eigenvectors for each iteration are stored and av-
eraged together so that better results are obtained.

RESULTS
The program that diagonalized the subset matrices pro-
duces eigenvalues and eigenvectors from the subset ma-
trices. These eigenvalues and eigenvectors are then
summed into histograms. All of the runs (or iterations)
are averaged together within the histograms to minimize
errors introduced by the random nature of the Monte Car-
lo method.

Graphs were plotted for many runs through the programs.
The graphs of the eigenvalues against the strengths of the
eigenvectors associated with the eigenvalues were the
main interest of this research. This relationship was im-
portant because it shows which eigenvalues are in the do-
main of diagonal elements. Often all but the last eigen-
value was in the domain of diagonal elements.

Several trends were noticed in working with the parame-
ters affecting the results:

a b
4 4
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Figure 1

Graphs of strength of eigenvector versus respective ei-
genvalue. The matrix (of order 106) has: diagonal terms
evenly spaced between 1 and 106 and off diagonal terms
= 0.1. The sub-matrix size is 100. The four graphs
show the general trend as the number of iterations is in-
creased. 1a) Only 1 iteration. 1b) 10 iterations averaged
together, Ic) 100 iterations averaged together. 1d)200
iterations averaged together. Note that there is a general
convergence towards a smooth curve as the number of it-
erations averaged logether increases. This deviation from
a smooth curve followed the standard Monte-Carlo pro-
portionality: deviation = constant | (Number of itera-
tions)1/2.
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Figure 2
Graphs of strengths of the eigenvector as a function of
the eigenvalue. The matrix (of order 290) has diagonal
elements evenly spaced between 1 and 290 and off diago-
nal elements equal to 0.1. 2a) Sub-matrix of order 25.
2b) Sub-matrix of order 50. 2¢) Sub-matrix of order
100. 2d) Main matrix of order 290, the exact answer.
These graphs show the effects of the subset matrix size
on the results. The number of iterations was set so that
the same amount of points (1000) was used in all cases.
The difference between graphs 2a) and 2d) are significant,
ie. greater than the random Monte-Carlo deviations, but
the general pattern is quite clear. This general pattern is
clear for a sub-matrix order of greater than about 10.

1) As the number of iterations increases, the smoothness
of the graph increases (see Figure 1). This is a general
result of all Monte-Carlo methods: as the number of it-
erations increases, the random fluctuations average out to
a smooth curve.

2) As the subset matrices' size (M) approaches the ma-
trix size (N), the graph of the subset matrix looks more
like the original matrix graph. This should be obvious:
as the subsets become more like the main matrix, the
subs]cls' results will become more like the main matrix's
results.

Figure 1 shows how increasing the number of iterations
decreases deviations. Precision is improved because more
samples of the main matrix, or order 106, are used. The
main matrix could not be diagonalized because it was too
large for our computer. By the time 100 iterations are
averaged together, much of the deviation shown for one
iteration is lost. The sub-matrix size was 100 for the 4
parts of Figure 1.

Figure 2 shows the effect of the subset matrix size. A
matrix of size 290 is diagonalized without using the
Monte-Carlo method and compared to several that were,
The general trends of the actual graph may be seen even
when the subset matrix is of size 25. Thus, in this test
problem, the general goal of obtaining the trends is met
even when the subset matrix size is only 25. The resem-
blance improves for subset matrix sizes of 50 and 100.
The same number of subset matrices, 1000, was used
each time, so that the effect of the subset matrix size
could be determined.
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Two numbers, the sub-matrices' size (M) and the number
of iterations averaged together (ITER), determine the time
needed to get an answer and the amount of random fluctu-
ations. The execution time is rtional to the cube of
the order of the subset matrix . The size of the ran-
dom fluctuations is profFonional to 1/(M*ITER)S,

Thus, there is a trade-off between an acceptable amount
of fluctuation and an acceptable running time.

As the size of the variations among the off-diagonal ele-
ments increases, more than one eigenvalue can fall out of
the domain of diagonal elements. A clear algorithm has
yet to be developed to analyze these extra eigenvalues and
their associated eigenvectors' strength.
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ABSTRACT
In a recent study 1 of how radiation fields associated with transition radiation from a plasma-like non-
stationary medium are distorted due to multiple scattering (which act to withdraw the traversing particle
from the formation zone), a dimensionless parameter (1 < 1) is introduced to describe the degree of 'with-
drawness'. The parameter 1) is defined as 1/(1 + f) where f is a function of the input parameters (the Lo-
rentz factor y and the scattering angle 6) and the observables (angle 6 and the frequency ® of the emitted

photon) and the plasma frequency of the medium

. In this article, we analyze the extreme and asymp-

totic behavior of 1 and its 2-dimensional normalization subject to energy constraints.

1. A.F. Barghouty and M.J. Pantazopoulou, Phys.Rev., A44, 1991, p. 3083.

INTRODUCTION
Experiments measuring radiation associated with the pas-
sage of charged particles through media under homogene-
ous or inhomogeneous conditions measure a sum of
many classical radiative processes, including Cerenkov
radiation, bremsstrahlung and transition radiation. Ceren-
kov radiation is the optical emission of a charge moving
with a constant velocity larger than the phase velocity of
light in a medium. Transition radiation, due to the
movement of a relativistic charged particle with constant
velocity under inhomogencous conditions '+4, is more
akin to bremsstrahlung than Cerenkov radiation. It re-
quires only a change in the parameter vn/c, where n is the
index of refraction and v is the velocity of the traversing
particle. The simplest process satisfying this condition
is when a charge crosses the boundary between a vacuum
and a medium#. Transition radiation is an emission pro-
cess associated with inhomogeneities (both temporal and
spatial) in the medium.

Earlier treatments of transition radiation concentrate on

Andrew is a senior, double majoring in chemistry and
spanish. He is a member of the Roanoke College Hon-
ors Program. This project came out of research he did in
the summer and fall of 1990 at Roanoke. Andrew also
took part in an inorganic synthesis project last summer
at Rice University. After graduating in May with a
B.Sc., Andrew looks forward to beginning work on his
Ph.D. in inorganic chemistry.

the case of a static interface between two media, either
medium-medium or vacuum-medium 12, In the case of
vacuum-medium transitions, a dif fereniial radiation inten-
sity is derived in the relativistic limit 4;

ey
=21 6% (we)* 0, -1, ,

wh
ere 0 is the angle formed between the emitted photon and
the traversing particle. 1, and ly are the coherent lengths
in medium and vacuum, given by:

4c , -2 2,~1
IVHF(Y +07)

5 )
4 w;
1 c['y_z+9?'+—2”'} ,
®

m

where 7 is the Lorentz factor for the traversing particle
and o)r is the plasma frequency of the medium. Essen-
tially I, and 1y determine the size of the formation zone
of the radiation field, i.e., the distance along the particle
trajectory after which separation between the particle and
;he c;uitled photon is of the order of the photon wave-
ength.

A recent study 3 examined a dynamic-interface model,
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Figure 1
Schematic showing the iso}gmpically expanding medium
(with thermal expansion velocity Pr) and its transition to
vacuum. The transition zone appears due to the jump in
€. The traversing charged particle ‘sees’ this dynamic in-
terface and emits a photon even before it actually crosses

the boundary.

where a plasma-like medium is allowed to expand freely
and isotropically. The medium makes a 'jump, character-
ized by an abrupt change in the dielectric permittivity €,
and thus the value of nv/c makes a sudden change. This
‘jump' is seen as a 'transition zone', with a time scale and
size (At, Az).

To explain this further, we envision an isotropically ex-
panding medium with thermal expansion velocity B (see
Figure 1). As the medium expands, its density decreases.
This decrease in density will lower the plasma frequency
of the medium. A traversing charged particle, with ve-
locity » B, thus will experience a medium making an
abrupt change in its &. Because this happens over finite
time At (and corresponding finite distance Az), we treat
this as a distinct evolutionary stage of the medium, dif-
ferent from the original medium and the vacuum, and call
it the 'transition zone' - Over this transition zone, we cal-
culate an average density that gives rise to an average

plasma frequency <mp>.

This dynamic-interface model contains 3 media (medium,
transition zone, and vacuum) and 2 boundaries. The
length in the transition zone is given by 7:

95
<o >
IT~19-[7_2+92+ ;:2 J ; ©)]
® 0}
where <@y> is plasma frequency of the medium averaged

over the transition zone.

Multiple scattering, defined as multiple long-range, small
angle elastic Coulomb collisions between the particles of
the medium and the traversing particle, results in a dimi-
nishing of the coherent length in the medium. This
tends to withdraw the particle from th% formation zone.
This diminishing is parameterized by

Im=nln. 4)
where I'y, is the new coherent length in the medium and
1 is a dimensionless parameter defined by 3.

1
n= e ol
2
<o >
1+<6%> (7‘2+ 0+ = ] ©)
[0

where <642> is the mean square of the scattering angle

over the length lp,. The parameter 1 varies from a non-
zero asymptotic value to one. The differential radiation
intensity was derived in the relativistic limit for the dy-
namic-interface model >:

&1 ah 3 2. 2
-‘m —-;2—3 (wc) (Iv_lrn)

©
lT_lv _ﬁﬁ 2
|1+ = € |2,

In—lp

Numerical solutions to Equation 6 show that multiple
scattering represents a marked and advantageous effect in
differentiating among the competing radiation mecha-
nisms.

ANALYSIS OF n
We begin by studying the dependence of 1| on 6 (the an-
gle between the emitted photon and the traversing parti-
cle) and  (the frequency of the emitted photon). We do
this twice, once by a contour plot of 11(6,®) and also by
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i n=1.0 ]
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Figure 2

Contour plot of 1 (parameterizing the degree of with-
drawness from the formation zone) as a function of 6 and
o, calculated using Equation 5.
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averaging over angle and frequency, one variable at a
time:

2n
<N>g =Jl ﬂ(—;’;l)da
0

<T|>0‘.'= .ﬂ’pﬂ(e'_m) do .
0o YO,

The upper limit for integrating over ® is taken to be the
cutoff frequency Yc'l))g because the radiation intensity
drops rapidly beyond this frequency. Afier this, we derive
expressions for ® and 6 that minimize 7 using the La-
grange undetermined multiplier method. Finally, to con-
serve energy in the process, we derive a 2-dimensional (0
and ®) normalization factor for 1.

Figure 2 is contour plot of j as a fimction of @ and 6
(Equation 5) that uses an estimate > for<642>. The fre-
quency and angular ranges inside the box in Figure 2
show where 1) deviates from 1, signifying an appreciable
effect of multple scattering over the over the frequenc
range obf (1/(y1A1),y<wp>) and the angular range (y?,
<Bge>+2)

Figure 3 shows the <1>g versus the frequency of the
emitted photon. The integration was done numerically
using Gaussian quadrature?. m begins to deviate from
unity (parameterizing a non-diminished formation zone)
for frequencies above a threshold frequency 1/(y1At).

Figure 4 shows a smooth, parametric function of frequen-
cy over the wide range (lf(Tlm),T-ca)p>). It appears to
saturate and persist for frequencies above Y<@p>.

Figure 4 shows <n>, as a function of the photon angle.
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Figure 3

Angle integrated <1>g as a function of the frequency of
the emitted photon.
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Figure 4

Frequency integrated <1> g as a function of the angle of
the emitted photon.

For angles < y-1, 7 is far from unity, indicating a strong
diminishing effect on 5]13 ormation zone. Over the an-
gular range (v, <852>-), the same smooth, paramet-
ric behavior is seen as in Figure 3. These figures sug-
gest a diminished formation zone due(tc} mtl:ll.iplc \
scattering over the frequency e_(1/(y1At),yx<

and the angular range (y!, c(!:):l%gj). AssuminguL)hp;
the collisions (i.e. uncorrelated, near collisions neglect-
ing bremsstrahlung3) do not depend on the frequency nor
the angle of the emitted photon, the constraint due to
conservation of energy can be written as:

&1 d 0 ®
dddo dodo

where the I ' refers to the inclusion of multiple scatter-
ing. Using the results of Equations 1 and 6 gives:

ah 3 2
-RTB (@) [1,(n - 1]

©
(I, (M+1) = 213+ 2014 - 1,) cos¢pl =0 ,

where ¢ = 2Az/It is the imaginary part of the phase fac-
tor appearing in Equations 1 and 6. This yields the con-
straint:
lr-Cly
CoRP ™11, (10)

where { = (n+1)/2

With this constraint, the Lagrange method gives the ex-
pression
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(28— 1) - AMlcosdp — Iy — 1)
(= 1)
where A is the Lagrange multiplier. Setting the partial

derivatives of Equation 11 equal to zero and solving for A
gives:

2
-2 .2 <‘-0p>] 2T mc
== ,m=1,2, ...
m(y +07 4+ =3 e m (12)

F(L,0.A) = (1n

By substituting values for the input parameters (of refer-
ence 3) and averalﬂng over each variable separately, we
find in Figure 3 that @ increases for increasing m, begin-
ning with @ = Yo, corresponding to m = 1. Addition-
ally, in Figure 4, we find that as m increases, 8 decreases
with 8 =y1 corresponding to m = 1. In both cases, and
as m becomes exceedingly large, the increase (decrease) in
® (6) is monotonic as the difference between two succes-
sive values becomes exceedingly small. This behavior
depicted by Figures 3 and 4, shows that the effect of mul-
tiple scattering, when maximized, tends to saturate at
these values of ® and 6 that minimize m, giving it its
asymptotic value.

For the purpose of energy conservation, a 2-dimensional
(w and 0) normalization of 1 is done using a two-
dimensional Simpson's integration routine?. Integrating
Equation 5 over both 8 and ®, and once again assuming
values for the input parameters gives a value of (.8346.
An examination of Figures 2 and 3 seems to indicate that
1| is more sensitive to O than it is to ®, since Figure 3 is
an average over 0 , thus 'removing' that dependence leav-
ing 1 minimized at a value almost equal to 0.83, while
Figure 2 shows 7 is still far from saturation after averag-
ing over . This feature of 1 seems to suggest that the
effect of multiple scattering is largely geometric rather
than dispersive, making it of significance for those emis-
sion processes directly affected by the formation-zone,
e.g. in the calculation of X-ray emissivity of relativistic
electrons traversing cosmic ;rains. Here, the formation-
zone effect has been found >+° to suppress high frequency
transition radiation.
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ABSTRACT
This paper will give an overview of the concepts behind strange attractors, fractal dimension, correlation
dimension and Lyapunov exponents, and how they apply, in particular, to the dynamical system described
by the sequence of smoothed sunspot numbers. Various methods of chaotic prediction will be
discussed. The smoothed monthly sunspot numbers will be predicted from the current number to Decem-

ber 1997.

Sunspots are solar photospheric phenomena which are
darker than the surrounding photosphere because they are
about 1500K cooler, due to a strong magnetic field which
inhibits the convective transport of energy. They have
been recorded for millenia. There are Chinese oracle
bones dating from before 1000 B.C. which record sun-
spots!. For many centuries sunspots were believed to be
the transit of planets, possibly because of Aristotle's be-
lief that th sun was a perfect body, and so could have no
blemishes<. With the invention of the telescope in the
early 17th century, sunspots were finally recognized as
solar features3. However, it was much later, in 1843,
that the sunspots were recognized as having a cycle of ap-
proximately 11 years4. The true cycle is 11.13 years. 5.

In 1848, the sunspot-relative numbers as a measure of
these sunspots were introduced. The numbers are calcu-
lated by counting the number of individual spots, f, and
counting the number of groups of spots, g. The sunspot
number is given by k(10g + f), where k was originally
set to unity, but because today we are able to see more
sunspots due to more sighting stations and be(teg equip-
ment, the value of this constant is set to k=0.6°.

Sunspots are a relative measure of solar activity. Be-
cause}of this, it is useful to monitor and predict
them’-14. For instance, an incorrect prediction of the
solar cycle may have contributed to the premature death

Eiluned is a senior majoring in physics. She and her
husband are planning to join the Peace Corps after their
graduation. This project was the result of a summer in-
ternship at the Geophysical Institute in Fairbanks, Alaska.

of the Skylab satellite, as the density of air at the lswighl
Skylab was operating varies with the solar cycle!.

Another reason to study sunspots is that they may be
correlated with weather on Earth. The famous example
of this is the "Maunder minimum", a period stretching
from ab%ut ,}645 to 1715 where there were few sunspots
sighted!%17, This corresponds to the coldest period of
the "Little Ice Age" wh'gh was characterized by an ex-
treme temperature dipl . The annual sunspot numbers,
with the Maunder minimum of the 17th century, are
shown in Figure 1. The data before 1650 is pieced to-
gether from phenomena related to the solar cycle, such as
observed auroras, in addition to direct sunspot sightings2.

The sun rotates with a period of about 27 days, so the
daily sunspot data have fluctuations which depend on
which side of the sun is facing Earth. These daily fluctu-
ations are mostly independent of the variation in the solar

Figure 1
Mean yearly sunspot numbers from 1500 to 1900 AD.
Data before 1650 have been pieced together from phe-
nomena relating to the solar cycle as well as direct sun-
spot sightings.
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cycle. The most useful prediction, then, is that of the
monthly sunspot number. Usually wha[,’ii gr?icted is
the smoothed monthly sunspot number’-10:13 which is
the result of the observed monthly numbers for 13
months (R.g, ... R, -.., R4¢) smoothed with the fol-
lowing formula:

+5
R—6+R+6+ 2 Z R‘l
=~ M

So 7

There were no reliable monthly sunspot numbers recorded
before 1749, however, so there are only 2907 raw sun-
spot numbers available (January 1749 through March
1991), which correspond to 2895 smoothed data.

Others have used chaotic analysis to predict sunspot cy-
cles, 13,14 but because of the choices of data sets, the re-
sults had limited applicability. The smoothed sunspot
number is used in this paper as it is the one which is
usually used for prediction. Also, the averaging reduces
some of the noise inherent in the raw dalzh. This is a
small data set for doing chaotic analysis!®19 but some
consider even data sets containing as few as 500 points to

be adequate20.

AN INTRODUCTION TO CHAOS
What differentiates chaotic systems from other dynamical
systems is the sustained sensitivity (o initial conditions.
In chaotic systems, if a state is iniu'allg similar to anoth-
er state, there is no guaraniee that the final states will be
similar. This sensitivity to initial conditions arises be-
cause there are nonlinear terms in the underlying dynam-
ics of the system. Sensitivity to initial conditions does
not imply that chaotic systems have as their source ran-
dom processes. The only fundamental source of random-
ness occurs in quantum mechanics. In principle, every
macmscgpic system is deterministic, including chaotic
systems2!, Lorenz's research into a system of equations
which modelled circulation of fluids was the first physi-
cal iiwesl.igaxion into deterministic chaotic phenome-
non42, In his paper was also the first drawing of a
chaotic attractor.

The attractor is the region in phase space which confines
the system, once a sufficient time has passed. If the sys-
tem is chaotic, the attractor is often called "strange”,
and usually has a complex geometrical structure. The at-
tractors of a chaotic systems must be nonperiodic. They
represent an infinite line confined to a finite area. Thus,
the dimension of a strange attractor cannot be measured
in the ordinary way. Strange attractors must hav%fmcml
dimension, a concept introduced by Mandelbrot=’. When
the fractal dimension is an integer it corresponds to the
common definition of dimension.

Finding the approximate fractal dimension will be useful
in studying the sunspot attractor, because a non-integer
fractal dimension is symptomatic of a chaotic system.
Unfortunately, finding a non-integer fractal dimension is
not always conclusive, as the error bounds on the dimen-
sion calculated may include an integer value.

There is another, more reliable test for chaos: the pres-
ence of a positive Lyapmwv exponent. Lyapunov expo-
nents are indicators of a system's sensitivity to initial
conditions. They measure how quickly nearby points on
the attractor diverge from or converge to each other. If
the system is sensitive to initial values, the divergence of
nearby points will be rapid, and at least one Lyapunov
exponent will be positive. Otherwise, the Lyapunov ex-
ponents will be not positive?425. A more complete in-
troduction to chaos can be found elsewhere26-29,

RECONSTRUCTING THE ATTRACTOR
It is not always possible to measure all of the variables
in the system. Usually only one variable is measured in
the form of a time-series. Fortunately, using vectors
made from time delayed values of q Siﬂgle time series,
the attractor may be reconstructed.”"»~" This reconstruct-
ed attractor has the same geometric properties as the orig-
inal atiractor. Note, however, that the axes in recon-
structed space have no physical meaning per se. For
instance the time series (X1,X2, ....Xj, ....XN}, would
yield reconstructed vectors:

X = (%), Xj+1> Xj+27% -Xj+(D-1)1) s (2

where D is the embedding dimension. The points (X;)
are D-dimensional points on the reconstructed attractor.
As the index j is increased, the trajectory traced in the re-
constructed phase space defines the reconstructed attractor.
Choosing the delay time 7 is tricky, and greatly influenc-
es the attractor’s shape if noise is present in the data or if
there are a limited number of points. Both of these prob-
lems are present in the smoothed sunspot data set. If Tis
too short the coordinates become singular, Xj = Xj4r, and
the points {X;) lie stretched along the diagonal in phase
space. As an example of this, Figure 2a shows a 3 di-
mensional reconstruction of the smoothed sunspot attrac-
tor, using a delay of T = 3 months. On the other hand, if
the delay is too long, chaos causes x; and Xj+(D-1)t t0 be
causagly disconnected, and the attracior shows no obvious
form2L, Figure 2b shows the 3 dimensional reconstruc-
tion with a delay which is too large, T = 50 months.
Compare Figures 2a and 2b with Figure 2¢ which is a re-
construction of the smoothed sunspot attractor using T =
7 months. This choice of T yields an attractor which has
a greater separation between the trajectory segments than

w27 x(t+27) xt+27)
X(teT) x(1+T) x{t+T)
x(t) (1) (0

at=3mo. b: t=50 mo. ¢ T=7mo.

Figure 2
Reconstructions of the smoothed sunspot attractor for
various delay times, embedding dimension of 3. a) at-
tractor is streiched along the diagonal for a delay time of
3 months. b) attractor is disorganized for a delay time of
50 months. c) delay time of 7 months has greater irajec-
tory segment separation than in a) and is more organized
than the attractor in b).
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that shown in Figure 2a, yet it has more organization
than the attractor shown in Figure 2b. In the next sec-
tion, we will discuss how suitable T and D are chosen.

QUANTIFYING THE DIMENSION OF THE
ATTRACTOR
The sunspot attractor is roughly confined to a plane, but
has points which protrude from that plane. Consequent-
ly, it should have a fractal dimension between 2 and 3.

To find this dimension, one first must calculate the corre-
lation integral:

N
C(0 = lim Lzz ec-Ix-xD, @

where the IX; - Xjl denote the Euclidean distance be-
tween the two vectors and © is the Heaviside function,
defined by:

ex)={%9. @

The correlation integral behaves as C(r) o r4 for small r.
This result defines d, the correlation dimension. The cor-
relation dimension has been shown to be a close lower
bound to the fractal dimension>Z, and consequently it is
often calculated in place of the fractal dimension. Since N
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Figure 3
The derivatives of the correlation integrals for various
embeddings: 10, 20, 30, 40. The scaling region can be
seen where the derivative becomes flat.

Estimated Correlation Exponent

Figure 4
Correlation estimate as a function of embedding dimen-
sion. Estimate saturates around embedding dimension
30. Averaging the estimates for embedding dimensions
larger than 30 yields a value of 2.46.

does not go to infinity, we find the correlation dimension
from the slope of log(r) vs. log(C(r)),

_ AloglC(n)] o)
A log(r)

The slope will not be constant along the entire range of
r, since the data set is finite. There is some maximum
distance, rpax, which encloses the entire attractor. Con-
sequently, radii larger than r s produce the same value
for C(r), i.e., the slope goes to zero for r>ryax. The
lower range of the plot is affected by the presence of
noise, as the smaller distances between points are more
influenced proportionately by noise than the larger ones.
Above the noise region and below the region of zero
slope, there will be a range where the slope is fairly con-
stant. This is called the "scaling region"”, and is where
the correlated dimension is measured.

For small data sets, a slightly altered algorithm for calcu-
lating the correlation integral yields a larger scaling re-
gions20. This method involves finding rj(m) or the radi-
us of a sphere about X; which contains m points on the
attractor. The radius r; fm) is dependent on which refer-
ence point X; we choose To obtain the correlation di-
mension from this set, we use

_ __Alog (m)
A logl<r(m)>] ’ ©

where the sharp brackets refer to averaging the set rij(m)}
along lines of constant m (horizontal averaging). This is
equivalent to finding the average radius of a sphere, cen-
tered on a point on the attractor, which encloses m neigh-
boring points. The correlation dimension estimate be-
comes larger as we embed the data in higher and higher
dimensions, until saturation is reached and the slopes
converge to d. Thus, we must calculate the correlation
dimension for different embedding dimensions. In Figure
3, we show the derivatives of the correlation integrals for
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Figure 5
The minium of the generalized correlation integral with
q=1 occurs for a delay time of 7 months.

various embedding dimensions.

For the smoothed sunspot data, saturation was reached
only after moving to an embedding dimension of about
30, yielding a value for the correlation dimension of d =
2.5 (see Figure 4). Because the correlation dimension is
a close lower bound to the fractal dimension, we can say
with a fair amount of certainty that the sunspot attractor
need only be embedded in 3 dimension for a complete re-
construction.

The next parameter that must be calculated is the time de-
lay 1. This is done by intrggucing a parameter known as
the "mutual information”. °° It measures the general de-
pendence of two variables. By picking a minimum of
this function, we choose a delay that does not create vec-
tors that are too related in the reconstructed attractor and
keeps the attractor organized. The first minimum is se-
lected because a short time delay usually yields a longer
scaling region.

The first minimum of the mutual information, can be
found using the generalized correlation integral34:
1
N

(7))
Cy(0 = [ T;- Z P (x)) J : )

i=1

where P((X) is the probability to find other points with-
in a sphere of radius r centered about Xj:

N
Pf(xl)=%kz e(f—IXJ—xkl)- (8)
=1

This counts the points which lie within r of the reference
vector X; and divides by the number of points in the data
set. The minima of the mutual information are also the
minima of the logarithm of this generalized correlation
with g=1. Figure 5 shows that the first minimum occurs
for a delay time of 7 months, using D=10 and r=100.0.
Notice that the correlation integral, Equation 3 is just

this generalized correlation integral with g=2.

QUANTIFYING THE CHAOS

The Lyapunov exponents quantify the amount by which
neighboring trajectories diverge on the attractor per time
step. If a D-dimensional infinitesimal sphere is chosen
at t=0, we may record the Lyapunov exponents by how
the sphere deforms into an D-dimensional ellipsoid with
principal axes (pj} as time progresses, due to the diver-
gence and omvell'gencc of the flow. The Lyapunov expo-

nents (1} are defined by :
" 1 pi(l)
A= Jim < log, ) ©

The exponents are ranked in order from largest to small-
est. A positive exponent marks a divergence of nearby
trajectories, and a negative exponent marks a conver-
gence. Thus, the Lyapunov exponents are a good indica-
tor of chaos. Any ﬂfslem which has a positive A1 is de-
fined to be chaotic“*. Since the system is embedded in D
dimensions, there are D directions in which the system
can diverge or converge. Consequently there are D Lyapu-
nov exponents associated with the system.

Long term behavior of the system is primarily deter-
mined to be the largest positive Lyapunov exponent.
The value calculated24 for A} depends on the initial posi-
tion on the attractor. By incrementing the starting posi-
tion, we computed a distribution of values for Aj. The
results of the calculations for different starting values are
shown in Figure 6. The value for A; was found to be
.009 £.002 bits/month. The positive value provides ver-
ification that the attractor is chaotic.

PREDICTION
Predicting chaotic systems may seem impossible due to
the divergence of nearby trajectory segments. However,
chaos is deterministic, and since the Lyapunov exponent
is fairly small we can make short range predictions
which, as we will show, are often fairly accurate. With a
noise-free system, the inverse of the Lyapunov exponent

L Average = 0.008 —
- Standard Deviation = 0.002

Ty

Number of Occurences
B

- - - T T | SR | | (R
Hh..’llthmmwtlﬂlwlulﬂ

Largest Lyapunov Exponent (bits/month)

Figure 6
Histogram showing distribution of values for the largest
Lyapunov exponent in units of bits/month using a delay
time of 7 months and an embedding dimension of 3.
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is the upper limit to the range of reliable predictions.

We can use this to put an absolute upper bound on our
ability to predict the sunspot cycle, Tmax < In(2)/ A1=20
years.

One simple approach to predicting the future state of the
system is to assume that the system will follow the path
of its nearest neighbor on the attractor. This is termed a
zeroth-order prediction.35 First-order prediction is also
based on the principle that a point on the attractor will do
what its nearest neighbors do, but it uses a number of
su:roundin% neighbors greater than D. There are two
slightly different versions of local-linear prediction. In
direct prediction the coordinates of the neighbors are
placed in a matrix, C,, and the evolution of the neigh-
bors T time steps into the future is recorded in the vector
DT, which contains the final coordinates. Then we find
't:hc vector m which best maps the present state into the
uture,

Co+m = Dr, (10)

Once we have the vector m, we can predict the future of
the point, Xpred, by:33

Xpred = Xo * M. (1)

In iterative forecasting, the time step is one, and the pro-
cess for direct forecasting is repeated T times. This
would cause the prediction to evolve like the system and
is usually more accurate than direct forecasting when
there is no noise present. In the presence of noise, how-
ever, this method suffers.

These three methods of prediction were used on the
smoothed sunspot data. To gauge the error involved, we
calculated the normalized error E, which is the difference
between the predicted value and the actual value normal-
ized by the rms deviation of the data:

2
E= \/ Opra— %07 > (12)
<(x — <x>)2>

0.50

ors -

orn

Normalized Emor

0.80 I e | I i Basaaloasnlogaslona

10 20 20 “0 50 L ™ L ) L] 100
Number of neighbors used in fit
Figure7

Number of neighbors used in the local-linear direct pre-
diction method versus the normalized error, using a time
step of 24 months. The graph show a minimum at
around 70 neighbors.
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Figure 8
A comparison of the chaotic prediction methods dis-
cussed: Zeroth-order, first-order iterated and first-order di-
rect.

IfE=0, there is no difference between the actual value
and the predicted value. If E =1, the prediction is no
better than the average value of the data.

When predicting with the smoothed sunspot data, we
need to predict 6 months ahead from the last existing
smoothed sunspot number due to the dependence of each
smoothed sunspot datum on the 12 raw monthly sunspot
numbers surrounding it. If the smoothed sunspot data is
predicted 48 months ahead, the final value will apply to
42 months in the future. All results given here are with-
out this 6 month lag removed. To calculate the normal-
ized prediction error E, we predicted the sunspot numbers
for the period 1950-1970 and compared the predictions to
the actual sunspot numbers for that period.

To make the most reliable predictions with the first order
direct method, we found the number of nearest neighbors
to use which gives the lowest E. From the graph in Fig-
ure 7, the best number of neighbors is 70, using a time
step of 36 months. For the first order iterated method,
we found the best number of neighbors to be 25 for a
time step of 36 months. However, for the iterated meth-
od, there was little variation in the normalized errors
found from using 25 nearest neighbors up to using 100
nearest neighbors.

Once these optimal numbers of nearest neighbors were
found, we used these numbers in comparing the predic-
tions using each method. The results are shown in Fig-
ure 8. The zeroth-order method is much less reliable than
either of the first-order methods, becoming as ineffective
as the average for a prediction of 3 years. The direct pre-
diction gives E = 1 after about 4 years. The direct predic-
tion is more reliable than the first-order iterative predic-
tion, probably due to the noise in the data. Consequently,
we will use the direct first-order local-linear method of
forecasting exclusively throughout the rest of the paper.

The quality of the predictions varies depending on where
on the cycle the prediction is made. The trajectories be-
come tangled near the origin in phase space (a minimum
of the sunspot cycle). Consequently, predictions from a
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Figure 9

A comparison of the use of 70 neighbors in the first-
order direct prediction method with the best number of
neighbors to use at various points in the solar cycle.
The top graph is a sample cycle, for reference.

minimum are less accurate than those from a maximum.
To obtain better predictions, we calculated the optimal
number of neighbors to use at each point along the 133
month cycle, l%)r a prediction time of 24 months. The
best number of neighbors to use increased near a mini-
mum, but did not yield significantly better results than
choosing the number of nearest neighbors to be 70, as
shown in Figure 9.

We used the direct local-linear method with 70 nearest
neighbors to forecast the current solar cycle, and the be-
ginning of the next solar cycle, forecasting from October
1990 to December 1997. The results of this forecast are
shown in Figure 9 and in Table 1. The error bars in this
figure are the average positive and negative errors com-
puted from predictions of previous smoothed sunspot
numbers from similar positions on the sunspot cycle.

Deterministic chaos provides a foundation from which
short-term forecasts of the smoothed monthly sunspot
numbers can be made. These forecasts are useful for pre-
dictions up to four years head, as long as prediction is
not attempted from a minimum in the solar cycle.
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